Abstract
We report the feasibility of a Ti3SiC2 MAX phase material as absorber for Q-switched pulse generation in the 1550 nm region. The proposed saturable absorber (SA) is fabricated by embedding Ti3SiC2 particles into polyvinyl alcohol (PVA) thin film and incorporated into Erbium-doped fiber laser (EDFL) cavity via a sandwich-structured fiber-ferrule platform. The SA thin film exhibits a linear absorption of 3.8 dB and a modulation depth of 51% in the 1550 nm region. Using the Ti3SiC2/PVA thin filmbased SA within an EDFL ring cavity, a self-started and stable Q-switched pulse train is achieved at a wavelength of 1561.8 nm. It exhibits a maximum pulse energy of 100.7 nJ, a maximum repetition rate of 43.5 kHz, and a minimum pulse width of 5.6 μs at a pump power of 71.5 mW. This result unveils the potential of Ti3SiC2 MAX phase material for use as a low-cost and practical SA for pulse generation in the 1550 nm region.
Original language | English |
---|---|
Pages (from-to) | 296-302 |
Number of pages | 7 |
Journal | Journal of Russian Laser Research |
Volume | 44 |
Issue number | 3 |
DOIs | |
Publication status | Published - May 2023 |
Keywords
- MAX phase
- Q-switching
- TiSiC
- saturable absorber