Abstract

Background: Pulmonary tuberculosis (PTB) is still a major health problem worldwide. The espD has a potential to be a new biomarker because it is important for the espA, espC, and ESX-1 protein secretion system that are actively expressed in active multiplication of Mycobacterium tuberculosis complex. Methods: A total of 55 sputum samples and 41 culture isolates from newly diagnosed PTB patients at Dr. Soetomo Academic Hospital were collected from September 2016 to April 2019. The tested samples using polymerase chain reaction targeted 555 bp of espD gene and sequencing. Clone Manager Version 6 and NCBI BLAST were used to align the gene sequence against wild-type M. tuberculosis. The prediction of T-cell epitope in espD gene was detected by GENETYX. The three-dimensional (3D) structure of espD was modeled by SWISS-MODEL and I-TASSER and was visualized with PyMOL. Results: From 55 sputum samples, 43 (78.18%) showed positive results, and all culture isolates showed positive results. In addition, all sequenced samples showed 100% homolog with M. tuberculosis H37Rv gene without detected variant or mutation. There were four T-cell epitopes that could be obtained. The 3D model had a I-TASSER confidence score of 3.91 with estimated RMSD of approximately 14.5 Å. The structure consists of a main fold of a three-stranded antiparallel β-sheet and a long α-helix surrounded by several minor secondary structures. Conclusions: This study provides a brief information about the sequence, epitope prediction, and 3D structure of EspD protein from M. tuberculosis strains in Indonesia.

Original languageEnglish
Pages (from-to)421-427
Number of pages7
JournalInternational Journal of Mycobacteriology
Volume10
Issue number4
DOIs
Publication statusPublished - 1 Oct 2021

Keywords

  • Mycobacterium tuberculosis
  • T-cell epitopes
  • espD full gene
  • polymerase chain reaction
  • three-dimensional protein structure

Fingerprint

Dive into the research topics of 'The espD full gene as a potential biomarker in active pulmonary tuberculosis'. Together they form a unique fingerprint.

Cite this