Abstract

To determine the inhibition effect of epigallocatechin gallate (EGCG) and green tea extract on neuronal necroptosis based on necroptosis morphology. In vivo study was performed on male Rattus norvegicus middle cerebral artery occlusion (MCAO) model divided into five groups, MCAO-control groups, EGCG 10 mg/kg BW/day, EGCG 20 mg/kg BW/day, EGCG 30 mg/kg BW/day, and green tea extract 30 mg/kg BW/day for 7 days treatment. MCAO model was made by modification method using Bulldog clamp. After 7 days of treatment, all R. norvegicus were sacrificed. After that, examination using Hematoxylin-Eosin stain was conducted to look at necroptosis morphology in each group. We found that there are significant differences between control group and the other three groups (EGCG 20 mg/kg BW/day, EGCG 30 mg/kg BW/day, and green tea extract (p<0.05). There is a significant correlation between the number of neuron cell necroptosis and both EGCG and green tea extract (p<0.05). The correlation is negative, which means both EGCG and green tea extract will decrease the number of neuron cell necroptosis. EGCG will decrease neuron cell necroptosis starting from the dose of 20 mg/kg BW/day. EGCG 30 mg/kg BW/day produces the best result compared to other doses. Camellia sinensis (green tea) with its active compound EGCG decreases neuronal necroptosis morphology in MCAO models.

Original languageEnglish
Pages (from-to)527-531
Number of pages5
JournalJournal of Basic and Clinical Physiology and Pharmacology
Volume32
Issue number4
DOIs
Publication statusPublished - 1 Jul 2021

Keywords

  • Cammelia sinensis
  • EGCG
  • green tea
  • necroptosis
  • neuron

Fingerprint

Dive into the research topics of 'The effect of Camellia sinensis (green tea) with its active compound EGCG on neuronal cell necroptosis in Rattus norvegicus middle cerebral artery occlusion (MCAO) model'. Together they form a unique fingerprint.

Cite this