Abstract
β-ionone (ION) is a cyclic terpenoid compound that demonstrates considerable potential for the prevention and treatment of cancer. However, the water solubility of β-ionone is poor and the compound demonstrates low permeability. Liposomes have been reported as increasing both qualities. In this study, the development of β-ionone liposomes was initiated by adding 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) to produce cationic liposomes as a means of enhancing binding to cancer cells. Liposomes composed of β-ionone, HSPC, cholesterol, and DSPE-mPEG2000 were prepared using the thin layer hydration method. Cellular uptake studies were carried out with HeLa cells incubated with β-ionone liposomes for two hours. The results indicated that the addition of DOTAP increased particle size and affected the spectroscopical and thermogram profiles of the liposomes, thereby confirming reduction in liposome crystallinity, while the zeta potential became positive. Moreover, the calcein release profile further showed that additional DOTAP increased both membrane fluidity and cellular uptake in HeLa cells In conclusion, adding DOTAP affected the physicochemical cationic properties of liposome and improved cellular uptake in HeLa cells.
Original language | English |
---|---|
Article number | 4324 |
Journal | Scientific Reports |
Volume | 13 |
Issue number | 1 |
DOIs | |
Publication status | Published - Dec 2023 |