TY - JOUR
T1 - The distribution pattern and growth factor level in platelet-rich fibrin incorporated skin-derived mesenchymal stem cells
T2 - An in vitro study
AU - Ihsan, Igo Syaiful
AU - Karsari, Deya
AU - Ertanti, Nora
AU - Dinaryanti, Aristika
AU - Nugraha, Alexander Patera
AU - Purwati, Purwati
AU - Sudjarwo, Sri Agus
AU - Rantam, Fedik Abdul
N1 - Publisher Copyright:
© 2020 Veterinary World. All rights reserved.
PY - 2020/10
Y1 - 2020/10
N2 - Background and Aim: A skin wound in an animal must be cared for to prevent further health issues. Platelet-rich fibrin (PRF) and skin-derived mesenchymal stem cells (SMSCs) have been reported to have potential in increasing the rate of wound healing. This study aimed to analyze the distribution patterns and levels of platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), vascular endothelial growth factor (VEGF), and transforming growth factor-β (TGF-β) in PRF incorporated with SMSCs. Materials and Methods: This study employed a true experiment (in vitro) design with post-test only performed in the control group alone. PRF and SMSCs were extracted from the blood and skin of 16 rabbits. SMSCs were characterized using immunocytochemistry to examine clusters of differentiation for 45, 73, 90, and 105. PRF was incorporated into the SMSCs and then divided into four groups (N=32/n=8): Group A (PRF only), Group B (PRF+SMSCs, incubated for 1 day), Group C (PRF+SMSCs, incubated for 3 days), and Group D (PRF+SMSCs, incubated for 5 days). Scanning electron microscopy was used to examine the distribution pattern of SMSCs between groups. The supernatant serum (Group A) and supernatant medium culture (Group D) were collected for the measurement of PDGF, IGF, VEGF, and TGF-β using an enzyme-linked immunosorbent assay sandwich kit. An unpaired t-test was conducted to analyze the differences between Groups A and D (p<0.01). Results: Group D had the most morphologically visible SMSCs attached to the PRF, with elongated and pseudopodia cells. There was a significant difference between the levels of growth factor in Groups A and D (p=0.0001; p<0.01). Conclusion: SMSCs were able to adhere to and distribute evenly on the surface of PRF after 5 days of incubation. The PRF incorporated SMSCs contained high levels of PDGF, IGF, VEGF, and TGF- β, which may prove to have potential in enhancing wound healing.
AB - Background and Aim: A skin wound in an animal must be cared for to prevent further health issues. Platelet-rich fibrin (PRF) and skin-derived mesenchymal stem cells (SMSCs) have been reported to have potential in increasing the rate of wound healing. This study aimed to analyze the distribution patterns and levels of platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), vascular endothelial growth factor (VEGF), and transforming growth factor-β (TGF-β) in PRF incorporated with SMSCs. Materials and Methods: This study employed a true experiment (in vitro) design with post-test only performed in the control group alone. PRF and SMSCs were extracted from the blood and skin of 16 rabbits. SMSCs were characterized using immunocytochemistry to examine clusters of differentiation for 45, 73, 90, and 105. PRF was incorporated into the SMSCs and then divided into four groups (N=32/n=8): Group A (PRF only), Group B (PRF+SMSCs, incubated for 1 day), Group C (PRF+SMSCs, incubated for 3 days), and Group D (PRF+SMSCs, incubated for 5 days). Scanning electron microscopy was used to examine the distribution pattern of SMSCs between groups. The supernatant serum (Group A) and supernatant medium culture (Group D) were collected for the measurement of PDGF, IGF, VEGF, and TGF-β using an enzyme-linked immunosorbent assay sandwich kit. An unpaired t-test was conducted to analyze the differences between Groups A and D (p<0.01). Results: Group D had the most morphologically visible SMSCs attached to the PRF, with elongated and pseudopodia cells. There was a significant difference between the levels of growth factor in Groups A and D (p=0.0001; p<0.01). Conclusion: SMSCs were able to adhere to and distribute evenly on the surface of PRF after 5 days of incubation. The PRF incorporated SMSCs contained high levels of PDGF, IGF, VEGF, and TGF- β, which may prove to have potential in enhancing wound healing.
KW - Growth factor
KW - Platelet-rich fibrin
KW - Rabbit
KW - Skin mesenchymal stem cells
UR - http://www.scopus.com/inward/record.url?scp=85094167388&partnerID=8YFLogxK
U2 - 10.14202/vetworld.2020.2097-2103
DO - 10.14202/vetworld.2020.2097-2103
M3 - Article
AN - SCOPUS:85094167388
SN - 0972-8988
VL - 13
SP - 2097
EP - 2103
JO - Veterinary World
JF - Veterinary World
IS - 10
ER -