The Biofilm Inhibition Properties of Glucosamine Gold Nanoparticles in Combination with Meropenem against Pseudomonas aeruginosa on the Endotracheal Tube: A Model of Biofilm-Related Ventilator-Associated Pneumonia

Dewi Santosaningsih, Yuanita Mulyastuti, Soeyati Poejiani, Rilia F. Putri, Liliana Dewi, Hisanifa Arifani, Yatim L. Ni’mah, Afaf Baktir

Research output: Contribution to journalArticlepeer-review

Abstract

Biofilm-related infections play a significant role in the development and persistence of ventilator-associated pneumonia. Pseudomonas aeruginosa (P. aeruginosa) frequently causes biofilm-related infections associated with ventilator tubing. Glucosamine gold nanoparticles (AuNPs) may exhibit antibiofilm properties; however, more studies, including combinatorial therapy with antibiotics, are needed to explore their potential applications in clinical settings. This study aims to investigate the biofilm inhibition properties of glucosamine AuNPs in combination with meropenem against P. aeruginosa ATCC 9027 on the endotracheal tube. A biofilm inhibition assay of glucosamine AuNPs at 0.02 mg/mL, both singly and in combination with meropenem at 1 mg/mL, was carried out against P. aeruginosa ATCC 9027 on an endotracheal tube using the tissue culture plate method. Scanning electron microscopy was performed for visualization. Glucosamine AuNPs at 0.02 mg/mL combined with meropenem at 1 mg/mL showed greater biofilm inhibition (72%) on the endotracheal tube than glucosamine nanoparticles at 0.02 mg/mL alone (26%) (p = 0.001). The scanning electron microscopic visualization revealed that the untreated P. aeruginosa biofilm was denser than the glucosamine nanoparticles-treated biofilm, whether combined with meropenem or using glucosamine nanoparticles alone. The combination of glucosamine AuNPs and meropenem may have the synergistic effect of inhibiting biofilm production of P. aeruginosa on the endotracheal tubes of patients with mechanical ventilation. Conducting additional experiments to explore the impact of combining glucosamine-coated gold nanoparticles (AuNPs) with meropenem on the inhibition of biofilm production by clinical P. aeruginosa isolates would be beneficial.

Original languageEnglish
Article number1604
JournalMaterials
Volume17
Issue number7
DOIs
Publication statusPublished - Apr 2024

Keywords

  • Pseudomonas aeruginosa
  • biofilm
  • glucosamine nanoparticles

Fingerprint

Dive into the research topics of 'The Biofilm Inhibition Properties of Glucosamine Gold Nanoparticles in Combination with Meropenem against Pseudomonas aeruginosa on the Endotracheal Tube: A Model of Biofilm-Related Ventilator-Associated Pneumonia'. Together they form a unique fingerprint.

Cite this