Study of mechanical and thermal properties in nano-hydroxyapatite/chitosan/carboxymethyl cellulose nanocomposite-based scaffold for bone tissue engineering: The roles of carboxymethyl cellulose

Aminatun, Dyah Hikmawati, Prihartini Widiyanti, Tahta Amrillah, W. Astri Nia, Ilena Tio Firdania, Che Azurahanim Che Abdullah

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

Synthetic scaffolding for bone tissue engineering (BTE) has been widely utilized. The scaffold for BTE requires sufficient porosity as a template for bone cell development and growth so that it can be used in the treatment of bone defects and fractures. Nevertheless, the porosity significantly influences the compressive strength of the scaffold. Hence, controlling the porosity is a pivotal role to obtain a proper scaffold for practical BTE application. Herein, we fabricated the nanocomposite-based scaffold utilizing nano-hydroxyapatite (n-HA). The scaffold was prepared in combination with chitosan (Ch) and carboxymethyl cellulose (CMC). The ratios of n-HA, Ch, and CMC used were 40:60:0, 40:55:5, 40:50:10, 40:45:15, and 40:40:20, respectively. By controlling the Ch and CMC composition, we can tune the porosity of the nanocomposite. We found that the interpolation of the CMC prevails, as a crosslinker reinforces the nanocomposite. In addition, the binding to Ch enhanced the compressive strength of the scaffold. Thermal characteristics revealed the coefficient of thermal expansion decreases with increasing CMC content. The nanocomposite does not expand at 25–75C, which is suitable for human body temperature. Therefore, this nanocomposite-based scaffold is feasible for BTE application.

Original languageEnglish
Article number6970
Pages (from-to)1-11
Number of pages11
JournalApplied Sciences (Switzerland)
Volume10
Issue number19
DOIs
Publication statusPublished - 1 Oct 2020

Keywords

  • BTE
  • Body temperature
  • Compressive strength
  • Nanocomposite
  • Porosity
  • Scaffold

Fingerprint

Dive into the research topics of 'Study of mechanical and thermal properties in nano-hydroxyapatite/chitosan/carboxymethyl cellulose nanocomposite-based scaffold for bone tissue engineering: The roles of carboxymethyl cellulose'. Together they form a unique fingerprint.

Cite this