TY - JOUR
T1 - Structure -Activity relationship of mutant KatG from INH resistant mycobacterium tuberculosis
AU - Purkan, Purkan
AU - Wahyuningsih, Sri Puji Astuti
AU - Retnowati, Wiwin
AU - Amelia, Diah
AU - Alimny, Alfain Noerdin
PY - 2017/6
Y1 - 2017/6
N2 - Mutation in katG gene of Mycobacterium tuberculosis encoding catalase-peroxidase that damage its enzyme activities is well associated with isoniazid (INH) resistance. The katG gene from INH resistant strain of M. tuberculosis clinical isolate L19 has been observed in previous study, carrying mutations of G234A and C625T, and changed the arginine residue at position 209 with cysteine in its KatG protein. However the activities of the mutant protein has been not known yet. Expression of the katG gene L19 that was done in Escherisicia coli BL21(DE3) using pCold II-DNA generated KatG protein with 80 kDa in SDS PAGE electroforegram. The mutant protein of KatG L19 decreased 43% of catalase activity and 11% of peroxidase activity against to KatG wild type (H37RV). The model structure of the mutant KatG protein had deviation structure toward KatG wt as 0,13 for number of Root Mean Square Deviations (RMSD). The mutant KatG (Arg209Cys) losed two hydrogen interactions and a van der Waals bond which present in KatG wild type. In the KatG wt protein, the both hydrogen bonds was formed between the Arg209 residu to Glu201, while the van der Waals bond occured by lingking of Arg209 residu to Glu217. Disruption in the some chemical interactions might trigger the decline in catalase-peroxidase activities of mutant KatG L19 and further it bring out the INH resistance in the clinical isolate L19.
AB - Mutation in katG gene of Mycobacterium tuberculosis encoding catalase-peroxidase that damage its enzyme activities is well associated with isoniazid (INH) resistance. The katG gene from INH resistant strain of M. tuberculosis clinical isolate L19 has been observed in previous study, carrying mutations of G234A and C625T, and changed the arginine residue at position 209 with cysteine in its KatG protein. However the activities of the mutant protein has been not known yet. Expression of the katG gene L19 that was done in Escherisicia coli BL21(DE3) using pCold II-DNA generated KatG protein with 80 kDa in SDS PAGE electroforegram. The mutant protein of KatG L19 decreased 43% of catalase activity and 11% of peroxidase activity against to KatG wild type (H37RV). The model structure of the mutant KatG protein had deviation structure toward KatG wt as 0,13 for number of Root Mean Square Deviations (RMSD). The mutant KatG (Arg209Cys) losed two hydrogen interactions and a van der Waals bond which present in KatG wild type. In the KatG wt protein, the both hydrogen bonds was formed between the Arg209 residu to Glu201, while the van der Waals bond occured by lingking of Arg209 residu to Glu217. Disruption in the some chemical interactions might trigger the decline in catalase-peroxidase activities of mutant KatG L19 and further it bring out the INH resistance in the clinical isolate L19.
KW - Catalase-peroxdase
KW - Isoniazid resistance
KW - KatG
KW - M. tuberculosis
UR - http://www.scopus.com/inward/record.url?scp=85024098460&partnerID=8YFLogxK
U2 - 10.22207/JPAM.11.2.07
DO - 10.22207/JPAM.11.2.07
M3 - Article
AN - SCOPUS:85024098460
SN - 0973-7510
VL - 11
SP - 695
EP - 701
JO - Journal of Pure and Applied Microbiology
JF - Journal of Pure and Applied Microbiology
IS - 2
ER -