Abstract
This work examined the thermodynamics of the MHD rotating dusty Maxwell water-basednanofluid with suspended dust particles. This study examines the importance of increasing thevolume fraction of tiny particles of TiO2 and dust on fluid dynamics. With appropriate similaritytransformations, the governing PDEs for both fluid and dusty-phase models are transformed intonon-linear linked non-dimensional ODEs. To acquire graphical consequences, the bvp4c technique isimplemented in MATLAB scripts. The primary and secondary velocities’ magnitude in both phasesdecreases with an increase in the dust particle volume concentration, Lorentz force, rotating, andMaxwell fluid parameters. The growing strength of tiny particles of dust and TiO2 is responsible forthe upshot of temperature in both dust and nanofluid phases. A visual representation of the Nusseltnumber and skin friction coefficients are is provided.
Original language | English |
---|---|
Article number | 877 |
Journal | Mathematics |
Volume | 11 |
Issue number | 4 |
DOIs | |
Publication status | Published - Feb 2023 |
Keywords
- MHD
- dusty fluid
- nanoparticles
- non-Newtonian fluid
- rotational flow