Semantic segmentation of artery-venous retinal vessel using simple convolutional neural network

W. Setiawan, M. I. Utoyo, R. Rulaningtyas, A. Wicaksono

Research output: Contribution to journalConference articlepeer-review

2 Citations (Scopus)

Abstract

Semantic segmentation is how to categorize objects in an image based on pixel color intensity. There is an implementation in the medical imaging. This article discusses semantic segmentation in retinal blood vessels. Retinal blood vessels consist of artery and vein. Arteryvenous segmentation is needed to detect diabetic retinopathy, hypertension, and artherosclerosis. The data for the experiment is Retinal Image vessel Tree Extraction (RITE). Data consists of 20 patches with a dimension of 128 × 128 × 3. The process for performing semantic segmentation consists of 3 method, create a Conventional Neural Network (CNN) model, pre-trained network, and training the network. The CNN model consists of 10 layers, 1 input layer image, 3 convolution layers, 2 Rectified Linear Units (ReLU), 1 Max pooling, 1 transposed convolution layer, 1 softmax and 1 pixel classification layer. The pre-trained network uses the optimization algorithm Stochastic Gradient Descent with Momentum (SGDM), Root Mean Square Propagation (RMSProp) and Adaptive Moment optimization (Adam). Various scenarios were tested to get optimal accuracy. The learning rate is 1e-3 and 1e-2. Minibatch size are 4,8,16,32,64, and 128. The maximum value of epoch is set to 100. The results show the highest accuracy of up to 98.35%

Original languageEnglish
Article number012021
JournalIOP Conference Series: Earth and Environmental Science
Volume243
Issue number1
DOIs
Publication statusPublished - 9 Apr 2019
Event1st International Conference on Environmental Geography and Geography Education, ICEGE 2018 - Jember, East Java, Indonesia
Duration: 17 Nov 201818 Nov 2018

Fingerprint

Dive into the research topics of 'Semantic segmentation of artery-venous retinal vessel using simple convolutional neural network'. Together they form a unique fingerprint.

Cite this