TY - JOUR
T1 - Role of apoptotic inhibitors, viability, and differentiation in low oxygen tension of mesenchymal stem cells cultured in a rat model of ovarian failure
AU - Safitri, Erma
AU - Purnobasuki, Hery
AU - Purnama, Muhammad Thohawi Elziyad
AU - Chhetri, Shekhar
N1 - Publisher Copyright:
Copyright: © 2023 Safitri E et al.
PY - 2023
Y1 - 2023
N2 - Background: Stem cell therapy shows applications potential for malnutrition-induced ovarian failure in rat models. However, it is ineffective because of the lack of viability and differentiation of transplanted stem cells, resulting in low adaptation and survival rates. We aimed to determine whether stem cells cultured under low oxygen (O 2) tension improves the adaptability and viability of stem cells, as well as ovarian failure. Methods: After four days of culturing mesenchymal stem cells (MSCs) in 21% oxygen (normoxia) as the T2 group and 1% oxygen (low O 2 or hypoxia) as the T1 group, 200 million bone marrow-derived MSCs per rat were transplanted into female rats with ovarian failure (15 rats per treatment group). A total of 15 fertile and 15 infertile rats were categorized as the C+ and C− groups, respectively. Results: The slight increase in cells expressing HSP70 (C+, T2, T1, and C− groups were 0.5 a±0.53, 1.7 a±0.82, 6.2 b±1.5, and 9.6 c±1.3, respectively), decrease in cells expressing caspase-3 as an apoptotic inhibitor (C+, T2, T1, and C− groups were 0.2 a±0.42, 0.6 a±0.52, 4.8 b±1.03, and 7.3 c±1.42, respectively), and increase in cells expressing VEGF-1 (C+, T2, T1, and C− groups were 10.8 c±1.55, 8.7 b±0.48, 0.4 a±0.52, and 0.2 a±0.42, respectively) and GDF-9 (C+, T2, T1, and C− groups were 5.8 c±1.47, 4.6 b±0.97, 0.5 a±0.53, and 0.3 a±0.48, respectively) were used as markers for viability and differentiation in ovarian tissue, indicating that MSCs cultured under low O 2 tension were more effective than those cultured under normoxic conditions as a treatment for female rats with ovarian failure. Furthermore, infertile female rats treated with MSCs cultivated under low O 2 tension had an enhanced ovarian tissue shape, as indicated by the increasing Graafian follicle count (C+, T2, T1, and C− groups were 8.9 c±0.74, 4.5 b±0.71, 0.5 a±0.53, and 0.4 a±0.52, respectively). Conclusions: MSCs cultured under low O 2 tension are an effective treatment for malnourished rats with ovarian failure.
AB - Background: Stem cell therapy shows applications potential for malnutrition-induced ovarian failure in rat models. However, it is ineffective because of the lack of viability and differentiation of transplanted stem cells, resulting in low adaptation and survival rates. We aimed to determine whether stem cells cultured under low oxygen (O 2) tension improves the adaptability and viability of stem cells, as well as ovarian failure. Methods: After four days of culturing mesenchymal stem cells (MSCs) in 21% oxygen (normoxia) as the T2 group and 1% oxygen (low O 2 or hypoxia) as the T1 group, 200 million bone marrow-derived MSCs per rat were transplanted into female rats with ovarian failure (15 rats per treatment group). A total of 15 fertile and 15 infertile rats were categorized as the C+ and C− groups, respectively. Results: The slight increase in cells expressing HSP70 (C+, T2, T1, and C− groups were 0.5 a±0.53, 1.7 a±0.82, 6.2 b±1.5, and 9.6 c±1.3, respectively), decrease in cells expressing caspase-3 as an apoptotic inhibitor (C+, T2, T1, and C− groups were 0.2 a±0.42, 0.6 a±0.52, 4.8 b±1.03, and 7.3 c±1.42, respectively), and increase in cells expressing VEGF-1 (C+, T2, T1, and C− groups were 10.8 c±1.55, 8.7 b±0.48, 0.4 a±0.52, and 0.2 a±0.42, respectively) and GDF-9 (C+, T2, T1, and C− groups were 5.8 c±1.47, 4.6 b±0.97, 0.5 a±0.53, and 0.3 a±0.48, respectively) were used as markers for viability and differentiation in ovarian tissue, indicating that MSCs cultured under low O 2 tension were more effective than those cultured under normoxic conditions as a treatment for female rats with ovarian failure. Furthermore, infertile female rats treated with MSCs cultivated under low O 2 tension had an enhanced ovarian tissue shape, as indicated by the increasing Graafian follicle count (C+, T2, T1, and C− groups were 8.9 c±0.74, 4.5 b±0.71, 0.5 a±0.53, and 0.4 a±0.52, respectively). Conclusions: MSCs cultured under low O 2 tension are an effective treatment for malnourished rats with ovarian failure.
KW - good health and well being
KW - malnutrition
KW - ovarian failure
KW - stem cells
UR - http://www.scopus.com/inward/record.url?scp=85180476366&partnerID=8YFLogxK
U2 - 10.12688/f1000research.124919.1
DO - 10.12688/f1000research.124919.1
M3 - Article
C2 - 38644927
AN - SCOPUS:85180476366
SN - 2046-1402
VL - 12
JO - F1000Research
JF - F1000Research
M1 - 24
ER -