TY - JOUR
T1 - Poly (1,8 Octanediol-co-Citrate) Hydroxyapatite Composite as Antibacterial Biodegradable Bone Screw
AU - Widiyanti, P.
AU - Sholikhah, I.
AU - Isfandiary, A.
AU - Hasbiyani, N. A.F.
AU - Lazuardi, M. B.
AU - Laksana, R. D.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2017/5/31
Y1 - 2017/5/31
N2 - The high bone fracture rates reaching up to 300-400 cases per month have been treated with surgical procedure of internal fixation. Nevertheless, the commonly used metal screw has shown several weaknesses. Therefore, it is required bone screw of which primary characteristics include being biocompatible, bio-functional, biodegradable, and anticorrosive. The study aimed to synthesize Antibacterial Poly 1,8-Octanediol-co-Citrate (POC) and investigated the effect of chitosan on the antibacterial and compatibility characteristics of POC-HA composite as antibacterial biodegradable bone screw. The characterization were conducted on POC-HA composite to assess its functional cluster, antibacterial activity, cytotoxicity, degradation capacity, and morphology. Pre-polymer POC was composited with 62% nano-HA, followed by post-polymerization treatment. The sample then coated by chitosan with composition variations of 1%, 3%, and 5%. The nano-HA marked with the appearance of phosphate cluster on the wavenumber of 872.17 cm-1 and 559.51 cm-1, while the chitosan marked with C=O stretch cluster of esther at 1729 cm-1 from Fourier Transform Infra-Red (FTIR) measurement. The best result was obtained with 3% chitosan coating. The POC-HA composites showed bacterial inhibiting ability of 16.92 mm with non-toxic characteristics. These results indicated that chitosan coating Poly 1,8-Octanediol-co-Citrate (POC)-Nano Hydroxyapatite composite is a potential candidate for an antibacterial biodegradable bone screw.
AB - The high bone fracture rates reaching up to 300-400 cases per month have been treated with surgical procedure of internal fixation. Nevertheless, the commonly used metal screw has shown several weaknesses. Therefore, it is required bone screw of which primary characteristics include being biocompatible, bio-functional, biodegradable, and anticorrosive. The study aimed to synthesize Antibacterial Poly 1,8-Octanediol-co-Citrate (POC) and investigated the effect of chitosan on the antibacterial and compatibility characteristics of POC-HA composite as antibacterial biodegradable bone screw. The characterization were conducted on POC-HA composite to assess its functional cluster, antibacterial activity, cytotoxicity, degradation capacity, and morphology. Pre-polymer POC was composited with 62% nano-HA, followed by post-polymerization treatment. The sample then coated by chitosan with composition variations of 1%, 3%, and 5%. The nano-HA marked with the appearance of phosphate cluster on the wavenumber of 872.17 cm-1 and 559.51 cm-1, while the chitosan marked with C=O stretch cluster of esther at 1729 cm-1 from Fourier Transform Infra-Red (FTIR) measurement. The best result was obtained with 3% chitosan coating. The POC-HA composites showed bacterial inhibiting ability of 16.92 mm with non-toxic characteristics. These results indicated that chitosan coating Poly 1,8-Octanediol-co-Citrate (POC)-Nano Hydroxyapatite composite is a potential candidate for an antibacterial biodegradable bone screw.
KW - Poly-1,8-octanediol-co-citrate (POC)
KW - antibacterial biodegradable bone screw
KW - chitosan
KW - condensation polymerization
KW - hydroxyapatite
KW - nanomaterial
UR - http://www.scopus.com/inward/record.url?scp=85021772938&partnerID=8YFLogxK
U2 - 10.1088/1757-899X/202/1/012082
DO - 10.1088/1757-899X/202/1/012082
M3 - Conference article
AN - SCOPUS:85021772938
SN - 1757-8981
VL - 202
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
IS - 1
M1 - 012082
T2 - 4th International Conference on Advanced Materials Science and Technology 2016, ICAMST 2016
Y2 - 27 September 2016 through 28 September 2016
ER -