TY - JOUR
T1 - Parameter Estimation of Multivariate Adaptive Regression Spline (MARS) with Stepwise Approach to Multi Drug-Resistant Tuberculosis (MDR-TB) Modeling in Lamongan Regency
AU - Yasmirullah, S. D.P.
AU - Otok, B. W.
AU - Purnomo, J. D.T.
AU - Prastyo, D. D.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2021/2/15
Y1 - 2021/2/15
N2 - Tuberculosis (TB) is an infectious disease, caused by mycobacterium tuberculosis that affects various organs, especially the lungs. If TB treatment is not done thoroughly by the patient, then it can lead to death. Tuberculosis disease could not be healed cause TB bacteria to double immunity against anti-TB drugs, called multi-drug resistant (MDR). One identification issue toward TB infection chain is a TB case distribution analysis using mathematical modeling. The method used in this study was Multivariate Adaptive Regression Spline (MARS). Multivariate Adaptive Regression Spline is one type of non-parametric regression techniques, where the model does not assume the functional relationship between response and predictor variables, and has a flexible functional structure as well. Modeling aims to determine the factors that have the most significant influence on MDR-TB cases in Lamongan regency, as well as predict the incidence of MDR-TB in each sub-regency. The results show, the best model has a combination of BF = 28, MI = 2 and MO = 3, based on the minimum GCV, which is 5.26E-06. Furthermore, the model is statistically proper according to the criteria of APER and Press's Q.
AB - Tuberculosis (TB) is an infectious disease, caused by mycobacterium tuberculosis that affects various organs, especially the lungs. If TB treatment is not done thoroughly by the patient, then it can lead to death. Tuberculosis disease could not be healed cause TB bacteria to double immunity against anti-TB drugs, called multi-drug resistant (MDR). One identification issue toward TB infection chain is a TB case distribution analysis using mathematical modeling. The method used in this study was Multivariate Adaptive Regression Spline (MARS). Multivariate Adaptive Regression Spline is one type of non-parametric regression techniques, where the model does not assume the functional relationship between response and predictor variables, and has a flexible functional structure as well. Modeling aims to determine the factors that have the most significant influence on MDR-TB cases in Lamongan regency, as well as predict the incidence of MDR-TB in each sub-regency. The results show, the best model has a combination of BF = 28, MI = 2 and MO = 3, based on the minimum GCV, which is 5.26E-06. Furthermore, the model is statistically proper according to the criteria of APER and Press's Q.
KW - Multivariate
KW - Regression Spline
KW - Tuberculosis
UR - http://www.scopus.com/inward/record.url?scp=85101783640&partnerID=8YFLogxK
U2 - 10.1088/1742-6596/1752/1/012017
DO - 10.1088/1742-6596/1752/1/012017
M3 - Conference article
AN - SCOPUS:85101783640
SN - 1742-6588
VL - 1752
JO - Journal of Physics: Conference Series
JF - Journal of Physics: Conference Series
IS - 1
M1 - 012017
T2 - 3rd International Conference on Statistics, Mathematics, Teaching, and Research 2019, ICSMTR 2019
Y2 - 9 October 2019 through 10 October 2019
ER -