On the Computational Bayesian Survival Spatial Dengue Hemorrhagic Fever (DHF) Modelling with Fernandez-Steel Skew Normal Conditional Autoregressive (FSSN CAR) Frailty

Dwi Rantini, Nur Iriawan, Irhamah, Musofa Rusli

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Generally, infectious disease data has a spatial effect, meaning that areas that are close together affect each other. One of the infectious diseases is dengue hemorrhagic fever (DHF). The recovery time of DHF patients is interesting to study. In this research, DHF data in eastern Surabaya was used. The recovery time of this DHF patient can be modeled using one of the statistical methods, namely survival analysis. This recovery time data follows the Weibull distribution. On the data indicated spatial effect, the conditional autoregressive (CAR) model can be used to express dependencies between adjacent areas. Spatial random effects in the survival model were modeled with Normal CAR, Double-Exponential (DE) CAR, and Fernandez-Steel skew Normal (FSSN) CAR. In this research, Cox regression was used and parameter estimation was performed using the Bayesian analysis with Hamiltonian Monte Carlo (HMC) algorithm using the Stan programming language. Based on the comparison of the Watanabe-Akaike information criterion (WAIC), the spatial random effects on the Weibull Cox regression model are best modeled with the FSSN CAR. This is because the FSSN CAR is able to capture error patterns both symmetrical and asymmetrical, not with Normal CAR and DE CAR which can only capture symmetrical error patterns. In this research, several variables that allegedly affect the recovery rate of DHF patients are given. Then, based on the best model, variables that significantly affect the patient's recovery rate are age, the high schools in last education, housewife in the type of occupation, stadium-II in severity level, fever days before entering the hospital, pulse, temperature, and leukocytes.

Original languageEnglish
Title of host publicationProceedings of the International Conference on Advanced Technology and Multidiscipline, ICATAM 2021
Subtitle of host publication"Advanced Technology and Multidisciplinary Prospective Towards Bright Future" Faculty of Advanced Technology and Multidiscipline
EditorsPrihartini Widiyanti, Prastika Krisma Jiwanti, Gunawan Setia Prihandana, Ratih Ardiati Ningrum, Rizki Putra Prastio, Herlambang Setiadi, Intan Nurul Rizki
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735444423
DOIs
Publication statusPublished - 19 May 2023
Event1st International Conference on Advanced Technology and Multidiscipline: Advanced Technology and Multidisciplinary Prospective Towards Bright Future, ICATAM 2021 - Virtual, Online
Duration: 13 Oct 202114 Oct 2021

Publication series

NameAIP Conference Proceedings
Volume2536
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference1st International Conference on Advanced Technology and Multidiscipline: Advanced Technology and Multidisciplinary Prospective Towards Bright Future, ICATAM 2021
CityVirtual, Online
Period13/10/2114/10/21

Keywords

  • Bayesian estimation
  • conditional autoregressive (CAR)
  • dengue hemorrhagic fever (DHF)
  • survival spatial model

Fingerprint

Dive into the research topics of 'On the Computational Bayesian Survival Spatial Dengue Hemorrhagic Fever (DHF) Modelling with Fernandez-Steel Skew Normal Conditional Autoregressive (FSSN CAR) Frailty'. Together they form a unique fingerprint.

Cite this