TY - JOUR
T1 - Molecular docking of anthocyanins and ternatin in Clitoria ternatea as coronavirus disease oral manifestation therapy
AU - Nugraha, Alexander Patera
AU - Rahmadhani, Desintya
AU - Puspitaningrum, Martining Shoffa
AU - Rizqianti, Yuniar
AU - Kharisma, Viol
AU - Ernawati, Diah Savitri
N1 - Publisher Copyright:
© 2021 Wolters Kluwer Medknow Publications. All rights reserved.
PY - 2021/10/1
Y1 - 2021/10/1
N2 - Herbal active compound with immunoregulator ability is considered a potential therapy for COVID-19 oral manifestation by downregulating pro-inflammatory cytokine storm. Meanwhile, anthocyanin and ternatin are the active compounds in Clitoria ternatea, which may act as a potential immunoregulator for COVID-19 therapy. The intention of this investigation was to investigate anthocyanin and ternatin as active compounds in C. ternatea that may be able to increase anti-inflammatory cytokine and inhibit pro-inflammatory cytokine and key proteins of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This study implemented bioinformatic approach to analyze anthocyanin and ternatin as active compounds in C. ternatea with anti- and pro-inflammatory cytokines and antiviral examination history through blind molecular docking study (in silico). Moreover, anthocyanins and ternatin were obtained from PubChem database by minimizing ligand structure in PyRx software to increase the flexibility. RCSB database was employed for preparing the protein samples consisting of interleukin (IL)-6, SARS-CoV-2-ACE2 glycoprotein complex, tumor necrosis factor-α receptor (TNF-αR), matrix metalloproteinase-9 (MMP-9), IL-6, IL-10, and human beta defensin-2 (HBD-2). In addition, The PyMol sofware was used to sterilize the protein samples to obtain the molecular docking optimization. This investigation found that, in the molecular docking simulation, the anthocyanin and ternatin showed producing the negative binding affinity to the ACE2 domain which interacted with RBD glycoprotein SARS-CoV-2. Anthocyanin and ternatin were then predicted to be able to influence any inhibitory activity of TNF-αR, MMP-9, and IL-6; increase IL-10; and increase HBD2 binding affinity values negatively. It can be predicted through molecular docking that anthocyanin and ternatin as the active compounds in C. ternatea contribute as a potential agent for COVID-19 oral manifestation therapy.
AB - Herbal active compound with immunoregulator ability is considered a potential therapy for COVID-19 oral manifestation by downregulating pro-inflammatory cytokine storm. Meanwhile, anthocyanin and ternatin are the active compounds in Clitoria ternatea, which may act as a potential immunoregulator for COVID-19 therapy. The intention of this investigation was to investigate anthocyanin and ternatin as active compounds in C. ternatea that may be able to increase anti-inflammatory cytokine and inhibit pro-inflammatory cytokine and key proteins of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This study implemented bioinformatic approach to analyze anthocyanin and ternatin as active compounds in C. ternatea with anti- and pro-inflammatory cytokines and antiviral examination history through blind molecular docking study (in silico). Moreover, anthocyanins and ternatin were obtained from PubChem database by minimizing ligand structure in PyRx software to increase the flexibility. RCSB database was employed for preparing the protein samples consisting of interleukin (IL)-6, SARS-CoV-2-ACE2 glycoprotein complex, tumor necrosis factor-α receptor (TNF-αR), matrix metalloproteinase-9 (MMP-9), IL-6, IL-10, and human beta defensin-2 (HBD-2). In addition, The PyMol sofware was used to sterilize the protein samples to obtain the molecular docking optimization. This investigation found that, in the molecular docking simulation, the anthocyanin and ternatin showed producing the negative binding affinity to the ACE2 domain which interacted with RBD glycoprotein SARS-CoV-2. Anthocyanin and ternatin were then predicted to be able to influence any inhibitory activity of TNF-αR, MMP-9, and IL-6; increase IL-10; and increase HBD2 binding affinity values negatively. It can be predicted through molecular docking that anthocyanin and ternatin as the active compounds in C. ternatea contribute as a potential agent for COVID-19 oral manifestation therapy.
KW - Anthocyanins
KW - COVID-19
KW - Clitoria ternatea
KW - infectious disease
KW - medicine
KW - ternatin
UR - http://www.scopus.com/inward/record.url?scp=85118925738&partnerID=8YFLogxK
U2 - 10.4103/japtr.japtr_126_21
DO - 10.4103/japtr.japtr_126_21
M3 - Article
AN - SCOPUS:85118925738
SN - 2231-4040
VL - 12
SP - 362
EP - 367
JO - Journal of Advanced Pharmaceutical Technology and Research
JF - Journal of Advanced Pharmaceutical Technology and Research
IS - 4
ER -