TY - JOUR
T1 - Molecular docking of 5-o-benzoylpinostrobin derivatives from Boesenbergia pandurata roxb. as anti-inflammatory
AU - Wiyono, Anang Setyo
AU - Siswandono,
AU - Diyah, Nuzul Wahyuning
N1 - Publisher Copyright:
© 2023, Page Press Publications. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Background: The use of NSAIDs, also known as non-steroidal anti-inflammatory drugs, has numerous adverse effects and consequences. For this reason, it is necessary to develop rational drugs as safer anti-inflammatory drugs with fewer side effects. Temu Kunci rhizome contains Pinostrobin (5-hydroxy-7-methoxyflavanone), which is believed to have anti-inflammatory properties. Objective: This study aims to determine the strongest anti-inflammatory activity at the cyclooxygenase-2 (COX-2) receptor through the 5-O-Benzoylpinostrobin derivative design. Methods: AutoDockTools on the COX-2 receptor (PDB code: 5IKR) were used in molecular docking in this study. The metrics employed were binding afinity (ΔG), inhibition constant (Ki), which serve as indicators of affinities, and amino acid residue similarity, which serves as a measure of the similarity of interactions. Predictive scores were confirmed by Molecular Docking Simulation. Results: The top five 5-O-Benzoylpinostrobin derivatives show a high affinity for the COX-2 receptor compared to Pinostrobin as a marker compound of Boesenbergia pandurata Roxb and furthermore give the lowest inhibition constant (Ki) and the highest negative binding free energy (ΔG), 35.40, 45.21, 54.75, 64.43, 76.97 nM and -10.16, -10.02, -9.91, -9.81, -9.7 kcal/mol. Interestingly, the five 5-O-Benzoylpinostrobin derivatives also have higher affinity than the native ligand Mefenamic acid, which is known to be a non-selective COX-2 inhibitor. The highest predicted affinity was shown by 4-Nitro-5-O benzoylpinostrobin for the COX-2 receptor (PDP ID: 5IKR), with a higher predicted affinity for Mefenamic acid. Conclusion: The five selected 5-O-Benzoylpinostrobin derivatives were potent modifications of pinostrobin as an anti-inflammatory because they showed a higher affinity than Pinostrobin and Mefenamic acid. This study demonstrated that it is highly feasible to produce and test the novel 5-OBenzoylpinostrobin derivative in vivo, specifically 4-Nitro-5-Obenzoylpinostrobin.
AB - Background: The use of NSAIDs, also known as non-steroidal anti-inflammatory drugs, has numerous adverse effects and consequences. For this reason, it is necessary to develop rational drugs as safer anti-inflammatory drugs with fewer side effects. Temu Kunci rhizome contains Pinostrobin (5-hydroxy-7-methoxyflavanone), which is believed to have anti-inflammatory properties. Objective: This study aims to determine the strongest anti-inflammatory activity at the cyclooxygenase-2 (COX-2) receptor through the 5-O-Benzoylpinostrobin derivative design. Methods: AutoDockTools on the COX-2 receptor (PDB code: 5IKR) were used in molecular docking in this study. The metrics employed were binding afinity (ΔG), inhibition constant (Ki), which serve as indicators of affinities, and amino acid residue similarity, which serves as a measure of the similarity of interactions. Predictive scores were confirmed by Molecular Docking Simulation. Results: The top five 5-O-Benzoylpinostrobin derivatives show a high affinity for the COX-2 receptor compared to Pinostrobin as a marker compound of Boesenbergia pandurata Roxb and furthermore give the lowest inhibition constant (Ki) and the highest negative binding free energy (ΔG), 35.40, 45.21, 54.75, 64.43, 76.97 nM and -10.16, -10.02, -9.91, -9.81, -9.7 kcal/mol. Interestingly, the five 5-O-Benzoylpinostrobin derivatives also have higher affinity than the native ligand Mefenamic acid, which is known to be a non-selective COX-2 inhibitor. The highest predicted affinity was shown by 4-Nitro-5-O benzoylpinostrobin for the COX-2 receptor (PDP ID: 5IKR), with a higher predicted affinity for Mefenamic acid. Conclusion: The five selected 5-O-Benzoylpinostrobin derivatives were potent modifications of pinostrobin as an anti-inflammatory because they showed a higher affinity than Pinostrobin and Mefenamic acid. This study demonstrated that it is highly feasible to produce and test the novel 5-OBenzoylpinostrobin derivative in vivo, specifically 4-Nitro-5-Obenzoylpinostrobin.
KW - Anti-inflammatory
KW - Benzoylpinostrobin
KW - Cyclooxygenase-2
KW - Docking
UR - http://www.scopus.com/inward/record.url?scp=85160338805&partnerID=8YFLogxK
U2 - 10.4081/jphia.2023.2532
DO - 10.4081/jphia.2023.2532
M3 - Article
AN - SCOPUS:85160338805
SN - 2038-9922
VL - 14
JO - Journal of Public Health in Africa
JF - Journal of Public Health in Africa
IS - S1
M1 - 2532
ER -