Modelling of Hypertension Risk Factors Using Penalized Spline to Prevent Hypertension in Indonesia

Tati Adiwati, Nur Chamidah

Research output: Contribution to journalConference articlepeer-review

13 Citations (Scopus)

Abstract

Hypertension is an increase in blood pressure that increases to a target organ, such as stroke, coronary heart disease, right ventricular hypertrophy. Hypertension occurs if the blood pressure reaches 140 mmHg or more and diastole reaches 90 mmHg or more. According to WHO, from 50% of hypertensive patients recovering, only 25% received treatment, and only 12.5% could be treated well. Nationally, 25.8% of Indonesia's population suffers from hypertension. In this study, we modeled the risk of hypertension by considering age, heart rate, family hypertension, stress levels, and the body's future index as factors that influence the risk of hypertension. The cross-sectional survey was conducted in August 2018 at the Surabaya Hajj Hospital. Based on previous research the method used is logit and gompit logistic regression method, but the results obtained are not maximal. Therefore, in this study the researchers proposed a method for constructing hypertension risk factor modeling using a nonparametric application using a penalized spline estimator. The result of classification accuracy by using non-parametrical is 96%. Based on the result, we conclude that non-parametrical approach has better than outcome so that it can be used to modelling the risk of hypertension.

Original languageEnglish
Article number052003
JournalIOP Conference Series: Materials Science and Engineering
Volume546
Issue number5
DOIs
Publication statusPublished - 1 Jul 2019
Event9th Annual Basic Science International Conference 2019, BaSIC 2019 - Malang, Indonesia
Duration: 20 Mar 201921 Mar 2019

Fingerprint

Dive into the research topics of 'Modelling of Hypertension Risk Factors Using Penalized Spline to Prevent Hypertension in Indonesia'. Together they form a unique fingerprint.

Cite this