Modeling of diabetes mellitus risk based on consumption of salt, sugar, and fat factors using local linear estimator

W. A. Anam, A. Massaid, N. A. Amesya, N. Chamidah

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Diabetes Mellitus is a major health problem in the world. Diabetes Mellitus, commonly known as “the silent killer”, affects many of the body’s systems and even leads to other serious diseases. The data from global studies showed that the number of people with Diabetes Mellitus in 2011 reached 366 million from all over the world. As a noncommunicable disease, the prevalence of diabetes rises every year. Unhealthy eating habits, such as the consumption of salt, sugar and an excessive amount of fats, is one of the inflicting factors of this disease. For predicting diabetes mellitus risk based on salt, sugar and fat consumptions, we need to build a model. In statistical analysis, there are two approaches for estimating the model, i.e., parametric and nonparametric regression model. A local linear estimator is one of the estimators in nonparametric regression model that the advantages of this estimator can estimate the function at each point such that the model closes to the real pattern, and also no need large data to estimate the model. In this paper, we estimate the diabetes mellitus risk model based on salt, sugar and fat consumptions by using local linear estimator and compare it with logistic parametric regression approach. The result of this study, we get classification accuracies of diabetes mellitus risk based on salt, sugar and fat consumptions of 94.28% by using local linear estimator and of 80% by using parametric logistic regression. It means that nonparametric regression model approach by using local linear estimator is better than parametric logistic regression model approach.

Original languageEnglish
Title of host publicationSymposium on Biomathematics 2019, SYMOMATH 2019
EditorsMochamad Apri, Vitalii Akimenko
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735420243
DOIs
Publication statusPublished - 22 Sept 2020
EventSymposium on Biomathematics 2019, SYMOMATH 2019 - Bali, Indonesia
Duration: 25 Aug 201928 Aug 2019

Publication series

NameAIP Conference Proceedings
Volume2264
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

ConferenceSymposium on Biomathematics 2019, SYMOMATH 2019
Country/TerritoryIndonesia
CityBali
Period25/08/1928/08/19

Fingerprint

Dive into the research topics of 'Modeling of diabetes mellitus risk based on consumption of salt, sugar, and fat factors using local linear estimator'. Together they form a unique fingerprint.

Cite this