Abstract

We successfully generated short pulse in an erbium-doped fiber laser (EDFL) cavity utilizing a new saturable absorber (SA) based on chromium gallium carbide (Cr2GaC). The SA film was prepared by implanting the Cr2GaC compound into a polyvinyl alcohol (PVA) matrix. Upon integration into the laser's cavity, we achieved a stable mode-locked laser centered at 1558.24 nm. This stability was maintained within a pump power range of 53.7–95.2 mW. Operating at a fixed repetition rate of 1.82, matching the cavity length, the laser consistently delivered pulses with a duration of 3.04 picoseconds. At its peak performance with a pump power of 95.2 mW, the laser exhibited an average power output of 6.81 mW, a peak power of 1.08 W, and a pulse envelope energy of 3.74 nJ. A noteworthy aspect of our study is the exceptional stability demonstrated by the laser. This stability is evidenced by a signal-to-noise ratio of 71.7 dB for the fundamental frequency. Importantly, this research represents a significant milestone as it marks the first instance of achieving soliton pulses in a laser cavity utilizing Cr2GaC as a SA.

Original languageEnglish
Article number171902
JournalOptik
Volume311
DOIs
Publication statusPublished - Sept 2024

Keywords

  • CrGaC
  • Mode-locking
  • Passive saturable absorber
  • Soliton pulse

Fingerprint

Dive into the research topics of 'Mode-locked erbium-doped fiber laser based on Cr2GaC saturable absorber'. Together they form a unique fingerprint.

Cite this