Abstract

Rapid growth of educational technology services today means that there are more applications in the market. Users may find it hard to choose the most suitable application, so they look for references. Experience shared in the form of text reviews and numerical rating can provide references. Text reviews are particularly specific and so they can provide insights to user satisfaction. In this study, we use text mining and multicriteria decision-making approach to measure the user satisfaction. The data is crawled and collected from seven educational applications: Coursera, edX, Khan Academy, LinkedIn Learning, Quip-per, Socratic and Udemy. Nine attributes are used to measure the user reviews according to quality model of e-learning systems. The result is in favor of Khan Academy, while Quipper is ranked the lowest. The v-values used range between 0 and1 and what is unique is that the rank of Khan Academy and Quipper are not affected by v-value while the ranks of the other applications are. It indicates that Khan Academy has high user satisfaction in terms of utility and low complaint from individuals. Quipper shows the opposite.

Original languageEnglish
Pages (from-to)76-88
Number of pages13
JournalInternational Journal of Emerging Technologies in Learning
Volume16
Issue number17
DOIs
Publication statusPublished - 2021

Keywords

  • educational application service
  • information and communication technology
  • multi criteria decision making
  • sentiment analysis
  • technology education

Fingerprint

Dive into the research topics of 'Measuring User Satisfaction of Educational Service Applications Using Text Mining and Multicriteria Decision-Making Approach'. Together they form a unique fingerprint.

Cite this