Machine Learning for the Prediction of Antiviral Compounds Targeting Avian Influenza A/H9N2 Viral Proteins

Siti Amiroch, Mohammad Isa Irawan, Imam Mukhlash, Mohammad Hamim Zajuli Al Faroby, Chairul Anwar Nidom

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Avian influenza subtype A/H9N2—which infects chickens, reducing egg production by up to 80%—may be transmissible to humans. In humans, this virus is very harmful since it attacks the respiratory system and reproductive tract, replicating in both. Previous attempts to find antiviral candidates capable of inhibiting influenza A/H9N2 transmission were unsuccessful. This study aims to better characterize A/H9N2 to facilitate the discovery of antiviral compounds capable of inhibiting its transmission. The Symmetry of this study is to apply several machine learning methods to perform virtual screening to identify H9N2 antivirus candidates. The parameters used to measure the machine learning model’s quality included accuracy, sensitivity, specificity, balanced accuracy, and receiver operating characteristic score. We found that the extreme gradient boosting method yielded better results in classifying compounds predicted to be suitable antiviral compounds than six other machine learning methods, including logistic regression, k-nearest neighbor analysis, support vector machine, multilayer perceptron, random forest, and gradient boosting. Using this algorithm, we identified 10 candidate synthetic compounds with the highest scores. These high scores predicted that the molecular fingerprint may involve strong bonding characteristics. Thus, we were able to find significant candidates for synthetic H9N2 antivirus compounds and identify the best machine learning method to perform virtual screenings.

Original languageEnglish
Article number1114
JournalSymmetry
Volume14
Issue number6
DOIs
Publication statusPublished - Jun 2022

Keywords

  • antivirus
  • avian influenza A/H9N2
  • machine learning
  • significant compounds

Fingerprint

Dive into the research topics of 'Machine Learning for the Prediction of Antiviral Compounds Targeting Avian Influenza A/H9N2 Viral Proteins'. Together they form a unique fingerprint.

Cite this