Lung Tumor Classification on Human Chest X-Ray Using Statistical Modelling Approach

N. Rizka, N. Chamidah

Research output: Contribution to journalConference articlepeer-review

7 Citations (Scopus)

Abstract

Lung tumor is a group of abnormal cells that are formed from the process of excessive and uncoordinated cell division in the lung or known as a neoplasia. Neoplasia refers to the growth of new cells that are different from the growth of cells around it. The Tumor can formed to be benign tumors that not cause cancer and malignant tumors that can cause cancer. Chest X-ray is the most technique that used for detecting a lung tumor. Image processing is done by mean for distinguishing the classification lung tumor. Based on previous research the most used method is the mathematical method, but the result obtained are not maximal. Therefore, in this study we propose methods to classify lung tumor by using statistical modelling approach with logit link function based on parametric model, and nonparametric model using penalized spline estimator. Based on the proposed method, we get the classification accuracy of 80% for parametric model approach and 85% for nonparametric model approach, it means that the nonparametric model approach is better than the parametric model approach.

Original languageEnglish
Article number052065
JournalIOP Conference Series: Materials Science and Engineering
Volume546
Issue number5
DOIs
Publication statusPublished - 1 Jul 2019
Event9th Annual Basic Science International Conference 2019, BaSIC 2019 - Malang, Indonesia
Duration: 20 Mar 201921 Mar 2019

Fingerprint

Dive into the research topics of 'Lung Tumor Classification on Human Chest X-Ray Using Statistical Modelling Approach'. Together they form a unique fingerprint.

Cite this