Background: Glaucoma is an optic neuropathy caused by the apoptosis of retinal ganglion cells and results in progressive retinal ganglion cell injury. A decrease in intraocular pressure (IOP) is a modifiable risk factor for slowing the progression of the disease, and can be accomplished through medication, laser therapy, or surgery. Even though the intraocular pressure has decreased and attained normal levels, the injury to the retinal ganglion cells continues in some cases. It is believed that neuroprotective administration has a positive effect on preventing the loss of retinal ganglion cells. Methods: Bax and Caspase-3 expression were measured involving 20 eyeballs of Rattus Norvegicus by immunohistochemistry examination. I-R injury was developed by increasing intraocular pressure (IOP) through the intracameral balanced salt solution (BSS) injection, then lowered after 60 minutes. Samples were divided into 4 groups: control, no further injection group, phosphate-buffered saline (PBS)-injected group and resveratrol-injected group. Each group was enucleated at days 7, 0, 7, and 7, respectively. Data with a non-normal distribution were examined using the Kruskal-Wallis test, and if the outcome was significant, the Mann-Whitney test. Results: The highest mean Bax and Caspase-3 expression was found in PBS injected and enucleated at day 7 group (G2), 0.96±0.40 and 0.72 ± 0.30, respectively. When compared to PBS injection, the expression of Bax and Caspase-3 was lower in the resveratrol-injected group. Conclusion: Bax and Caspase-3 expressions were lower in the intravitreal injection of Resveratrol in the dose of 100 µM following the I-R injury group compared to the group without intravitreal Resveratrol injection.

Original languageEnglish
Pages (from-to)1207-1212
Number of pages6
JournalPharmacognosy Journal
Issue number6
Publication statusPublished - Nov 2023


  • Apoptosis
  • Glaucoma
  • Ischemic-reperfusion injury
  • Neuroprotective
  • Resveratrol


Dive into the research topics of 'Intravitreal Resveratrol as Anti Apoptotic Agent Against Retinal Ganglion Cell Loss in Ischemic Reperfusion Injury'. Together they form a unique fingerprint.

Cite this