TY - JOUR
T1 - In vivo study of bovine hydroxyapatite-gelatin-hydroxypropyl methylcellulose with alendronate as injectable bone substitute composite in osteoporotic animal model
AU - Budiatin, Aniek Setiya
AU - Gani, Maria Apriliani
AU - Putri, Bulan Rhea Kaulika Hadinar
AU - Samirah, Samirah
AU - Hikmawati, Dyah
AU - Putra, Alfian Pramudita
AU - Su’aidah, Nily
AU - Khotib, Junaidi
N1 - Publisher Copyright:
© 2022 Journal of Advanced Pharmaceutical Technology & Research.
PY - 2022/10/1
Y1 - 2022/10/1
N2 - The injectable bone substitute (IBS) is a self-setting local drug delivery system that adjusts the shape of the bone gap in the fracture. This study aimed to examine the effectiveness of IBS composites of bovine hydroxyapatite (BHA) and alendronate (Ale) in accelerating bone growth in osteoporotic rats. IBS was made by mixing BHA with gelatin 5%, hydroxypropyl methylcellulose (HPMC) 2%, and Ale 10%. The physical properties of IBS were viscosity, injectability, and density tests. Twenty-four female Wistar rats were divided into four groups. After 8 weeks, 2 mm gap was made in the right femur of all rats and filled with IBS. The healing process was observed after 6 weeks with X-ray imaging and H and E staining. The obtained results showed viscosity, injectability, and density value of IBS from 30.4 to 39.4 dPa.s, 98.22%–98.64%, and 0.6325–0.8409 g/cm3, respectively. X-ray imaging and histology results proved the condition of osteoporosis in rats with ovariectomy. The addition of BHA-Gel-HPMC-Ale significantly affected the number of osteoblasts, osteocytes, and osteoclasts (P < 0.05). After 45 days of observation, the addition of BHA-Gel-HPMC-Ale showed the highest mean number of osteoblasts, osteocytes, and osteoclasts, which were 25.00 ± 3.00, 64.33 ± 11.15, and 5.67 ± 0.58 compared to BHA-Gel-HPMC and positive control groups. The BHA-Gel-HPMC-Ale IBS has the potential to reverse osteoporosis. Nevertheless, the underlying potential of these biomaterials to reverse osteoporosis needs further research.
AB - The injectable bone substitute (IBS) is a self-setting local drug delivery system that adjusts the shape of the bone gap in the fracture. This study aimed to examine the effectiveness of IBS composites of bovine hydroxyapatite (BHA) and alendronate (Ale) in accelerating bone growth in osteoporotic rats. IBS was made by mixing BHA with gelatin 5%, hydroxypropyl methylcellulose (HPMC) 2%, and Ale 10%. The physical properties of IBS were viscosity, injectability, and density tests. Twenty-four female Wistar rats were divided into four groups. After 8 weeks, 2 mm gap was made in the right femur of all rats and filled with IBS. The healing process was observed after 6 weeks with X-ray imaging and H and E staining. The obtained results showed viscosity, injectability, and density value of IBS from 30.4 to 39.4 dPa.s, 98.22%–98.64%, and 0.6325–0.8409 g/cm3, respectively. X-ray imaging and histology results proved the condition of osteoporosis in rats with ovariectomy. The addition of BHA-Gel-HPMC-Ale significantly affected the number of osteoblasts, osteocytes, and osteoclasts (P < 0.05). After 45 days of observation, the addition of BHA-Gel-HPMC-Ale showed the highest mean number of osteoblasts, osteocytes, and osteoclasts, which were 25.00 ± 3.00, 64.33 ± 11.15, and 5.67 ± 0.58 compared to BHA-Gel-HPMC and positive control groups. The BHA-Gel-HPMC-Ale IBS has the potential to reverse osteoporosis. Nevertheless, the underlying potential of these biomaterials to reverse osteoporosis needs further research.
KW - Alendronate
KW - bovine hydroxyapatite
KW - fracture
KW - injectable bone substitute
KW - osteoporosis
UR - http://www.scopus.com/inward/record.url?scp=85140739283&partnerID=8YFLogxK
U2 - 10.4103/japtr.japtr_266_22
DO - 10.4103/japtr.japtr_266_22
M3 - Article
AN - SCOPUS:85140739283
SN - 2231-4040
VL - 13
SP - 261
EP - 265
JO - Journal of Advanced Pharmaceutical Technology and Research
JF - Journal of Advanced Pharmaceutical Technology and Research
IS - 4
ER -