TY - JOUR
T1 - In vitro induction of human dental pulp stem cells toward pancreatic lineages
AU - Kuncorojakti, Suryo
AU - Rodprasert, Watchareewan
AU - Le, Quynh Dang
AU - Osathanon, Thanaphum
AU - Pavasant, Prasit
AU - Sawangmake, Chenphop
N1 - Publisher Copyright:
© 2021 JoVE Journal of Visualized Experiments.
PY - 2021/9
Y1 - 2021/9
N2 - As of 2000, the success of pancreatic islet transplantation using the Edmonton protocol to treat type I diabetes mellitus still faced some obstacles. These include the limited number of cadaveric pancreas donors and the long-term use of immunosuppressants. Mesenchymal stem cells (MSCs) have been considered to be a potential candidate as an alternative source of islet-like cell generation. Our previous reports have successfully illustrated the establishment of induction protocols for differentiating human dental pulp stem cells (hDPSCs) to insulin-producing cells (IPCs). However, the induction efficiency varied greatly. In this paper, we demonstrate the comparison of hDPSCs pancreatic induction efficiency via integrative (microenvironmental and genetic manipulation) and non-integrative (microenvironmental manipulation) induction protocols for delivering hDPSC-derived IPCs (hDPSC-IPCs). The results suggest distinct induction efficiency for both the induction approaches in terms of 3-dimensional colony structure, yield, pancreatic mRNA markers, and functional property upon multi-dosage glucose challenge. These findings will support the future establishment of a clinically applicable IPCs and pancreatic lineage production platform.
AB - As of 2000, the success of pancreatic islet transplantation using the Edmonton protocol to treat type I diabetes mellitus still faced some obstacles. These include the limited number of cadaveric pancreas donors and the long-term use of immunosuppressants. Mesenchymal stem cells (MSCs) have been considered to be a potential candidate as an alternative source of islet-like cell generation. Our previous reports have successfully illustrated the establishment of induction protocols for differentiating human dental pulp stem cells (hDPSCs) to insulin-producing cells (IPCs). However, the induction efficiency varied greatly. In this paper, we demonstrate the comparison of hDPSCs pancreatic induction efficiency via integrative (microenvironmental and genetic manipulation) and non-integrative (microenvironmental manipulation) induction protocols for delivering hDPSC-derived IPCs (hDPSC-IPCs). The results suggest distinct induction efficiency for both the induction approaches in terms of 3-dimensional colony structure, yield, pancreatic mRNA markers, and functional property upon multi-dosage glucose challenge. These findings will support the future establishment of a clinically applicable IPCs and pancreatic lineage production platform.
UR - http://www.scopus.com/inward/record.url?scp=85118155391&partnerID=8YFLogxK
U2 - 10.3791/62497
DO - 10.3791/62497
M3 - Article
AN - SCOPUS:85118155391
SN - 1940-087X
VL - 2021
JO - Journal of Visualized Experiments
JF - Journal of Visualized Experiments
IS - 175
M1 - e62497
ER -