TY - GEN
T1 - Hybrid CPU and GPU computation to detect lung nodule in computed tomography images
AU - Sentana, I. Wayan Budi
AU - Jawas, Naser
AU - Wardani, Anggun Esti
N1 - Funding Information:
ACKNOWLEDGMENT The authors would like to express the great thank to Directorate General for Research strengthening and Development, Ministry of Research, Technology and Higher Education, Republic of Indonesia as the sponsor of this research through the scheme of prime university research grants, as well as to Tabanan General Hospital and Airlangga University Hospital which has given time for consultation and discussion.
Publisher Copyright:
© 2018 IEEE.
PY - 2018/10
Y1 - 2018/10
N2 - Lung Nodule is a white patch on the thorax medical image, usually used as an early marker of lung cancer. Although there were some research deals with lung nodule detection, but none of those researches tailoring Graphical Processing Unit (GPU) to assist the computing process. This research aims to produce algorithms that can detect lung nodules automatically in CT images, by utilizing a combination of hybrid computing between Central Processing Unit (CPU) and Graphical Processing Unit. The framework used is Compute Unified Device Architecture, which consists of platform and programming model. The algorithm consists of several steps: read dicom and data normalization, lung segmentation, candidate nodule extraction, and classification. Normalization is required to facilitate calculation by changing the data type ui16 to ui8. Furthermore, segmentation is used to separate the lung parts with other organs, where at this stage the Otsu Algorithm and Moore Neighborhood Tracing (MNT) are used. The next step is Lung Nodule Extraction, which aims to find the nodule candidate. The last step is a classification that utilizes the Support Vector Machine (SVM) to distinguish which one is nodule or not. The algorithm successfully detects near round nodules that are free-standing or not attached to other parts of organs. After undergoing ground truth tests, it was found that under some conditions, the algorithm has not been able to distinguish nodules and other strokes that resemble nodules. While in terms of computing speed is found a very surprising result because overall single CPU computing provides better results compared to hybrid CPU and GPU computing.
AB - Lung Nodule is a white patch on the thorax medical image, usually used as an early marker of lung cancer. Although there were some research deals with lung nodule detection, but none of those researches tailoring Graphical Processing Unit (GPU) to assist the computing process. This research aims to produce algorithms that can detect lung nodules automatically in CT images, by utilizing a combination of hybrid computing between Central Processing Unit (CPU) and Graphical Processing Unit. The framework used is Compute Unified Device Architecture, which consists of platform and programming model. The algorithm consists of several steps: read dicom and data normalization, lung segmentation, candidate nodule extraction, and classification. Normalization is required to facilitate calculation by changing the data type ui16 to ui8. Furthermore, segmentation is used to separate the lung parts with other organs, where at this stage the Otsu Algorithm and Moore Neighborhood Tracing (MNT) are used. The next step is Lung Nodule Extraction, which aims to find the nodule candidate. The last step is a classification that utilizes the Support Vector Machine (SVM) to distinguish which one is nodule or not. The algorithm successfully detects near round nodules that are free-standing or not attached to other parts of organs. After undergoing ground truth tests, it was found that under some conditions, the algorithm has not been able to distinguish nodules and other strokes that resemble nodules. While in terms of computing speed is found a very surprising result because overall single CPU computing provides better results compared to hybrid CPU and GPU computing.
KW - CT images
KW - GPU and CPU
KW - Hybrid Computing
KW - Lung Nodule
UR - http://www.scopus.com/inward/record.url?scp=85070828610&partnerID=8YFLogxK
U2 - 10.1109/IAC.2018.8780573
DO - 10.1109/IAC.2018.8780573
M3 - Conference contribution
AN - SCOPUS:85070828610
T3 - Proceedings of the 3rd International Conference on Informatics and Computing, ICIC 2018
BT - Proceedings of the 3rd International Conference on Informatics and Computing, ICIC 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 3rd International Conference on Informatics and Computing, ICIC 2018
Y2 - 17 October 2018 through 18 October 2018
ER -