Hybrid CPU and GPU computation to detect lung nodule in computed tomography images

I. Wayan Budi Sentana, Naser Jawas, Anggun Esti Wardani

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Lung Nodule is a white patch on the thorax medical image, usually used as an early marker of lung cancer. Although there were some research deals with lung nodule detection, but none of those researches tailoring Graphical Processing Unit (GPU) to assist the computing process. This research aims to produce algorithms that can detect lung nodules automatically in CT images, by utilizing a combination of hybrid computing between Central Processing Unit (CPU) and Graphical Processing Unit. The framework used is Compute Unified Device Architecture, which consists of platform and programming model. The algorithm consists of several steps: read dicom and data normalization, lung segmentation, candidate nodule extraction, and classification. Normalization is required to facilitate calculation by changing the data type ui16 to ui8. Furthermore, segmentation is used to separate the lung parts with other organs, where at this stage the Otsu Algorithm and Moore Neighborhood Tracing (MNT) are used. The next step is Lung Nodule Extraction, which aims to find the nodule candidate. The last step is a classification that utilizes the Support Vector Machine (SVM) to distinguish which one is nodule or not. The algorithm successfully detects near round nodules that are free-standing or not attached to other parts of organs. After undergoing ground truth tests, it was found that under some conditions, the algorithm has not been able to distinguish nodules and other strokes that resemble nodules. While in terms of computing speed is found a very surprising result because overall single CPU computing provides better results compared to hybrid CPU and GPU computing.

Original languageEnglish
Title of host publicationProceedings of the 3rd International Conference on Informatics and Computing, ICIC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538669204
DOIs
Publication statusPublished - Oct 2018
Event3rd International Conference on Informatics and Computing, ICIC 2018 - Palembang, Indonesia
Duration: 17 Oct 201818 Oct 2018

Publication series

NameProceedings of the 3rd International Conference on Informatics and Computing, ICIC 2018

Conference

Conference3rd International Conference on Informatics and Computing, ICIC 2018
Country/TerritoryIndonesia
CityPalembang
Period17/10/1818/10/18

Keywords

  • CT images
  • GPU and CPU
  • Hybrid Computing
  • Lung Nodule

Fingerprint

Dive into the research topics of 'Hybrid CPU and GPU computation to detect lung nodule in computed tomography images'. Together they form a unique fingerprint.

Cite this