TY - JOUR
T1 - Hollowfiber polyurethane-collagen coating chitosan as nerve graft for therapy of peripheral nerve injury in extreme paralysis
AU - Maulida, Hendita Nur
AU - Qulub, Fitriyatul
AU - Rosdiani, Azizah Fresia
AU - Purnama, Disca Sandyakala
AU - Saraswati, Karina Dwi
AU - Widiyanti, Prihartini
N1 - Publisher Copyright:
© 2016 Trans Tech Publications, Switzerland.
PY - 2016
Y1 - 2016
N2 - Peripheral nerve injury with gaps between 5 and 30 mm can result in permanent paralysis because axons are cut. The distance between axons, which is more than 1-2 cm, needs graft in the form of nerve connecting pipe in order to repair the defects. A synthesis of hollowfiber polyurethane-collagen coated by chitosan was carried out to identify its potential as treatment accelerator for peripheral nerve injury. The result of Fourier Transform Infrared (FTIR) analysis showed multiple links between chitosan and glutaraldehyde, which can be seen in wavenumber shift from 1080-1100 cm-1 to 1002 cm-1. The degradation test result revealed that the sample displayed mass loss after it was soaked in simulated body fluid (SBF) for seven days. Polyurethane can be degraded in the body after 30 days. This converges with the nerve mechanism that regenerates at the rate of 1 mm/day or 1 inch/month. The result of tensile test indicated that modulus values of chitosan coating variation of 1%, 1.5%, and 2% were 4.75 MPa, 4.74 MPa, and 7.67 Mpa respectively. The outcome of scanning electron microscope (SEM) showed that hollow fiber has a diameter of 2.021-2.032 mm, which matches the diameter of peripheral nerves ranging from 1.5 to 3 mm and the membrane pore size of 31.33-39.65 μm. The result of MTT assay demonstrated that the percentage of viable fibroblast BHK-21 cells was exceeding 50%, which means that the sample does not have toxic properties. The result of this study is expected to provide theoretical basis for the utilization of polyurethane-collagen coating chitosan as nerve graft for theraphy of peripheral nerve injury. The utilization is possible due to the fact that the composite exhibits biocompatible, regenerative, and easily degradable characteristics. Moreover, it could become an alternative solution to answer the need of a more affordable and easier-to-produce nerve graft, so it can be mass-produced in Indonesia.
AB - Peripheral nerve injury with gaps between 5 and 30 mm can result in permanent paralysis because axons are cut. The distance between axons, which is more than 1-2 cm, needs graft in the form of nerve connecting pipe in order to repair the defects. A synthesis of hollowfiber polyurethane-collagen coated by chitosan was carried out to identify its potential as treatment accelerator for peripheral nerve injury. The result of Fourier Transform Infrared (FTIR) analysis showed multiple links between chitosan and glutaraldehyde, which can be seen in wavenumber shift from 1080-1100 cm-1 to 1002 cm-1. The degradation test result revealed that the sample displayed mass loss after it was soaked in simulated body fluid (SBF) for seven days. Polyurethane can be degraded in the body after 30 days. This converges with the nerve mechanism that regenerates at the rate of 1 mm/day or 1 inch/month. The result of tensile test indicated that modulus values of chitosan coating variation of 1%, 1.5%, and 2% were 4.75 MPa, 4.74 MPa, and 7.67 Mpa respectively. The outcome of scanning electron microscope (SEM) showed that hollow fiber has a diameter of 2.021-2.032 mm, which matches the diameter of peripheral nerves ranging from 1.5 to 3 mm and the membrane pore size of 31.33-39.65 μm. The result of MTT assay demonstrated that the percentage of viable fibroblast BHK-21 cells was exceeding 50%, which means that the sample does not have toxic properties. The result of this study is expected to provide theoretical basis for the utilization of polyurethane-collagen coating chitosan as nerve graft for theraphy of peripheral nerve injury. The utilization is possible due to the fact that the composite exhibits biocompatible, regenerative, and easily degradable characteristics. Moreover, it could become an alternative solution to answer the need of a more affordable and easier-to-produce nerve graft, so it can be mass-produced in Indonesia.
KW - Chitosan
KW - Collagen
KW - Hollowfiber
KW - Nerve graft
KW - Peripheral nerve injury
KW - Polyurethane
UR - http://www.scopus.com/inward/record.url?scp=84979502239&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/JBBBE.28.78
DO - 10.4028/www.scientific.net/JBBBE.28.78
M3 - Article
AN - SCOPUS:84979502239
SN - 2296-9837
VL - 28
SP - 78
EP - 84
JO - Journal of Biomimetics, Biomaterials and Biomedical Engineering
JF - Journal of Biomimetics, Biomaterials and Biomedical Engineering
ER -