TY - JOUR
T1 - Gastric microbiome changes in relation with Helicobacter pylori resistance
AU - Dewayani, Astri
AU - Fauzia, Kartika Afrida
AU - Alfaray, Ricky Indra
AU - Waskito, Langgeng Agung
AU - Doohan, Dalla
AU - Rejeki, Purwo Sri
AU - Alshawsh, Mohammed Abdullah
AU - Rezkitha, Yudith Annisa Ayu
AU - Yamaoka, Yoshio
AU - Miftahussurur, Muhammad
N1 - Publisher Copyright:
© 2023 Dewayani et al.
PY - 2023/5
Y1 - 2023/5
N2 - Introduction Inadequate antimicrobial treatment has led to multidrug-resistant (MDR) bacteria, including Helicobacter pylori (H. pylori), which one of the notable pathogens in the stomach. Antibiotic- induced changes in the microbiota can negatively affect the host. This study aimed to determine the influence of H. pylori resistance on the diversity and abundance of the stomach microbiome. Methods Bacterial DNA was extracted from biopsy samples of patients presenting dyspepsia symptoms with H. pylori positive from cultures and histology. DNA was amplified from the V3-V4 regions of the 16S rRNA gene. In-vitro E-test was used to detect antibiotic resistance. Microbiome community analysis was conducted through α-diversity, β-diversity, and relative abundance. Results Sixty-nine H. pylori positive samples were eligible after quality filtering. Following resistance status to five antibiotics, samples were classified into 24 sensitive, 24 single resistance, 16 double resistance, 5 triple resistance. Samples were mostly resistant to metronidazole (73.33%; 33/45). Comparation of four groups displayed significantly elevated α-diversity parameters under the multidrug resistance condition (all P <0.05). A notable change was observed in triple-resistant compared to sensitive (P <0.05) and double-resistant (P <0.05) groups. Differences in β-diversity by UniFrac and Jaccard were not significant in terms of the resistance (P = 0.113 and P = 0.275, respectively). In the triple-resistant group, the relative abundance of Helicobacter genera was lower, whereas that of Streptococcus increased. Moreover, the linear discriminant analysis effect size (LEfSe) was associated with the presence of Corynebacterium and Saccharimonadales in the single-resistant group and Pseudomonas and Cloacibacterium in the triple-resistant group. Conclusion Our results suggest that the resistant samples showed a higher trend of diversity and evenness than the sensitive samples. The abundance of H. pylori in the triple-resistant samples decreased with increasing cohabitation of pathogenic bacteria, which may support antimicrobial resistance. However, antibiotic susceptibility determined by the E-test may not completely represent the resistance status.
AB - Introduction Inadequate antimicrobial treatment has led to multidrug-resistant (MDR) bacteria, including Helicobacter pylori (H. pylori), which one of the notable pathogens in the stomach. Antibiotic- induced changes in the microbiota can negatively affect the host. This study aimed to determine the influence of H. pylori resistance on the diversity and abundance of the stomach microbiome. Methods Bacterial DNA was extracted from biopsy samples of patients presenting dyspepsia symptoms with H. pylori positive from cultures and histology. DNA was amplified from the V3-V4 regions of the 16S rRNA gene. In-vitro E-test was used to detect antibiotic resistance. Microbiome community analysis was conducted through α-diversity, β-diversity, and relative abundance. Results Sixty-nine H. pylori positive samples were eligible after quality filtering. Following resistance status to five antibiotics, samples were classified into 24 sensitive, 24 single resistance, 16 double resistance, 5 triple resistance. Samples were mostly resistant to metronidazole (73.33%; 33/45). Comparation of four groups displayed significantly elevated α-diversity parameters under the multidrug resistance condition (all P <0.05). A notable change was observed in triple-resistant compared to sensitive (P <0.05) and double-resistant (P <0.05) groups. Differences in β-diversity by UniFrac and Jaccard were not significant in terms of the resistance (P = 0.113 and P = 0.275, respectively). In the triple-resistant group, the relative abundance of Helicobacter genera was lower, whereas that of Streptococcus increased. Moreover, the linear discriminant analysis effect size (LEfSe) was associated with the presence of Corynebacterium and Saccharimonadales in the single-resistant group and Pseudomonas and Cloacibacterium in the triple-resistant group. Conclusion Our results suggest that the resistant samples showed a higher trend of diversity and evenness than the sensitive samples. The abundance of H. pylori in the triple-resistant samples decreased with increasing cohabitation of pathogenic bacteria, which may support antimicrobial resistance. However, antibiotic susceptibility determined by the E-test may not completely represent the resistance status.
UR - http://www.scopus.com/inward/record.url?scp=85159760102&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0284958
DO - 10.1371/journal.pone.0284958
M3 - Article
C2 - 37200323
AN - SCOPUS:85159760102
SN - 1932-6203
VL - 18
JO - PLoS ONE
JF - PLoS ONE
IS - 5 May
M1 - e0284958
ER -