Folate receptor mediated in vivo targeted delivery of human serum albumin coated manganese ferrite magnetic nanoparticles to cancer cells

A. Zaidan, F. Ilhami, M. Z. Fahmi, B. Purwanto, R. Z. Kharisma

Research output: Contribution to journalConference articlepeer-review

Abstract

Manganese ferrite nanoparticles (MnFe2O4) have received increasing attention due to their remarkable magnetic properties and have been used for various biomedical applications. They have potential applications in magnetic resonance imaging and hyperthermia for cancer. Both novel applications require a delivery system that will allow nanoparticle to move easily and localization of nanoparticle to the target tissue. In our work, we developed human serum albumin coated manganese ferrite magnetic nanoparticles (HSA-MF NPs). The nanoparticles were prepared using solvothermal method and modified with folic acid for targeted delivery. Structure and morphology of manganese ferrite nanoparticle were characterized by X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM). The size of folic acid conjugated HSA-MF NPs (HSA-MF-FA NPs) were studied by dynamic light scattering (DLS). In the in vivo study, we used benzopyrene-induced cancer in mice. We successfully delivered HSA-MF-FA NPs through intravenous tail injection after induction of the tumour. We found that 54% of initial HSA-MF-FA NPs which previously injected localize in the target tissue. While obtained p-value from independent T-test is 0.013 which shows that there is a difference between the control group (HSA-MF NPs) and the treated group (HSA-MF-FA NPs)

Original languageEnglish
Article number012048
JournalJournal of Physics: Conference Series
Volume853
Issue number1
DOIs
Publication statusPublished - 7 Jun 2017
EventInternational Conference on Physical Instrumentation and Advanced Materials, ICPIAM 2016 - Surabaya, Indonesia
Duration: 27 Oct 2016 → …

Fingerprint

Dive into the research topics of 'Folate receptor mediated in vivo targeted delivery of human serum albumin coated manganese ferrite magnetic nanoparticles to cancer cells'. Together they form a unique fingerprint.

Cite this