TY - JOUR
T1 - Flumazenil Pretreatment Reduces Mefenamic Acid-Induced Central Nervous System Toxicity in Mice
AU - Jarrar, Qais
AU - Ayoub, Rami
AU - Jarrar, Yazun
AU - Aburass, Hadeel
AU - Goh, Khang Wen
AU - Ardianto, Chrismawan
AU - Ming, Long Chiau
AU - Moshawih, Said
AU - Alfaqih, Hussain
N1 - Publisher Copyright:
© 2023 The Author(s). Published by IMR Press.
PY - 2023/7
Y1 - 2023/7
N2 - Background: Mefenamic acid (MFA), a common analgesic, causes central nervous system (CNS) toxicity at high doses with a proposed activity on the Gamma-aminobutyric acid (GABA) system. However, it remains unknown whether flumazenil (FMZ), a GABA type A receptor (GABAAR) antagonist, can reverse MFA toxicity. Methods: The behavioral and neurophysiological effects of MFA were investigated in mice with and without FMZ pre-treatment. The elevated zero maze (EZM) and marble burying tests were used to assess anxiety-like behaviors and burying activities, respectively. The standard bar test was used to evaluate catalepsy, while the actophotometer test was used to measure locomotor activity. Seizure intensity was scored, and fatalities were counted. Results: Without FMZ pretreatment, MFA induced behavioral and neurophysiological effects in a dose-dependent manner as follows: At a dose of 20 mg/kg, i.p, MFA-treated mice exhibited anxiety-like behaviors, which was determined by a significant increase in the time spent in the closed areas and a significant decrease in the number of entries to the open areas of the EZM apparatus. These mice also showed a significant decrease in the burying activity, manifested as a significant decrease in the number of buried marbles. At 40 mg/kg, i.p., MFA-treated mice showed catalepsy that was associated with a significant decrease in locomotor activity. At a dose of 80 mg/kg, i.p., mice developed fatal tonic-clonic seizures (seizure score = 4). Pre-treatment with FMZ (5 mg/kg, i.p.) significantly reversed the anxiety-like behaviors and restored marble-burying activity. Additionally, FMZ prevented catalepsy, significantly restored locomotor activity, reduced seizure intensity (seizure score = 0.3) and significantly reduced mortalities. Conclusions: The present study’s findings indicate that activation of the GABAAR is involved in the CNS toxicity of MFA, and FMZ reverses MFA toxicity by interfering with this receptor.
AB - Background: Mefenamic acid (MFA), a common analgesic, causes central nervous system (CNS) toxicity at high doses with a proposed activity on the Gamma-aminobutyric acid (GABA) system. However, it remains unknown whether flumazenil (FMZ), a GABA type A receptor (GABAAR) antagonist, can reverse MFA toxicity. Methods: The behavioral and neurophysiological effects of MFA were investigated in mice with and without FMZ pre-treatment. The elevated zero maze (EZM) and marble burying tests were used to assess anxiety-like behaviors and burying activities, respectively. The standard bar test was used to evaluate catalepsy, while the actophotometer test was used to measure locomotor activity. Seizure intensity was scored, and fatalities were counted. Results: Without FMZ pretreatment, MFA induced behavioral and neurophysiological effects in a dose-dependent manner as follows: At a dose of 20 mg/kg, i.p, MFA-treated mice exhibited anxiety-like behaviors, which was determined by a significant increase in the time spent in the closed areas and a significant decrease in the number of entries to the open areas of the EZM apparatus. These mice also showed a significant decrease in the burying activity, manifested as a significant decrease in the number of buried marbles. At 40 mg/kg, i.p., MFA-treated mice showed catalepsy that was associated with a significant decrease in locomotor activity. At a dose of 80 mg/kg, i.p., mice developed fatal tonic-clonic seizures (seizure score = 4). Pre-treatment with FMZ (5 mg/kg, i.p.) significantly reversed the anxiety-like behaviors and restored marble-burying activity. Additionally, FMZ prevented catalepsy, significantly restored locomotor activity, reduced seizure intensity (seizure score = 0.3) and significantly reduced mortalities. Conclusions: The present study’s findings indicate that activation of the GABAAR is involved in the CNS toxicity of MFA, and FMZ reverses MFA toxicity by interfering with this receptor.
KW - GABA
KW - anxiety
KW - central nervous system
KW - convulsions
KW - gamma-aminobutyric acid type A receptors
KW - neurological disease
KW - psychiatric disease
UR - http://www.scopus.com/inward/record.url?scp=85165898205&partnerID=8YFLogxK
U2 - 10.31083/j.jin2204104
DO - 10.31083/j.jin2204104
M3 - Article
C2 - 37519168
AN - SCOPUS:85165898205
SN - 0219-6352
VL - 22
JO - Journal of Integrative Neuroscience
JF - Journal of Integrative Neuroscience
IS - 4
M1 - 104
ER -