TY - JOUR
T1 - Fabrication and Characterization of Submicron-Scale Bovine Hydroxyapatite
T2 - A Top-Down Approach for a Natural Biomaterial
AU - Gani, Maria Apriliani
AU - Budiatin, Aniek Setiya
AU - Lestari, Maria Lucia Ardhani Dwi
AU - Rantam, Fedik Abdul
AU - Ardianto, Chrismawan
AU - Khotib, Junaidi
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/3/1
Y1 - 2022/3/1
N2 - Submicron hydroxyapatite has been reported to have beneficial effects in bone tissue engineering. This study aimed to fabricate submicron-scale bovine hydroxyapatite (BHA) using the high-energy dry ball milling method. Bovine cortical bone was pretreated and calcined to produce BHA powder scaled in microns. BHA was used to fabricate submicron BHA with milling treatment for 3, 6, and 9 h and was characterized by using dynamic light scattering, scanning electron microscope connected with energy dispersive X-Ray spectroscopy, Fourier-transform infrared spectroscopy, and X-ray diffractometry to obtain its particle size, calcium-to-phosphorus (Ca/P) ratio, functional chemical group, and XRD peaks and crystallinity. Results showed that the particle size of BHA had a wide distribution range, with peaks from ~5 to ~10 µm. Milling treatment for 3, 6, and 9 h successfully gradually reduced the particle size of BHA to a submicron scale. The milled BHA’s hydrodynamic size was significantly smaller compared to unmilled BHA. Milling treatment reduced the crystallinity of BHA. However, the treatment did not affect other characteristics; unmilled and milled BHA was shaped hexagonally, had carbonate and phosphate substitution groups, and the Ca/P ratio ranged from 1.48 to 1.68. In conclusion, the fabrication of submicron-scale BHA was successfully conducted using a high-energy dry ball milling method. The milling treatment did not affect the natural characteristics of BHA. Thus, the submicron-scale BHA may be potentially useful as a biomaterial for bone grafts.
AB - Submicron hydroxyapatite has been reported to have beneficial effects in bone tissue engineering. This study aimed to fabricate submicron-scale bovine hydroxyapatite (BHA) using the high-energy dry ball milling method. Bovine cortical bone was pretreated and calcined to produce BHA powder scaled in microns. BHA was used to fabricate submicron BHA with milling treatment for 3, 6, and 9 h and was characterized by using dynamic light scattering, scanning electron microscope connected with energy dispersive X-Ray spectroscopy, Fourier-transform infrared spectroscopy, and X-ray diffractometry to obtain its particle size, calcium-to-phosphorus (Ca/P) ratio, functional chemical group, and XRD peaks and crystallinity. Results showed that the particle size of BHA had a wide distribution range, with peaks from ~5 to ~10 µm. Milling treatment for 3, 6, and 9 h successfully gradually reduced the particle size of BHA to a submicron scale. The milled BHA’s hydrodynamic size was significantly smaller compared to unmilled BHA. Milling treatment reduced the crystallinity of BHA. However, the treatment did not affect other characteristics; unmilled and milled BHA was shaped hexagonally, had carbonate and phosphate substitution groups, and the Ca/P ratio ranged from 1.48 to 1.68. In conclusion, the fabrication of submicron-scale BHA was successfully conducted using a high-energy dry ball milling method. The milling treatment did not affect the natural characteristics of BHA. Thus, the submicron-scale BHA may be potentially useful as a biomaterial for bone grafts.
KW - bone graft
KW - bone scaffold
KW - calcium phosphate
KW - nanomaterial
KW - neglected disease
KW - submicron material
UR - http://www.scopus.com/inward/record.url?scp=85127596728&partnerID=8YFLogxK
U2 - 10.3390/ma15062324
DO - 10.3390/ma15062324
M3 - Article
AN - SCOPUS:85127596728
SN - 1996-1944
VL - 15
JO - Materials
JF - Materials
IS - 6
M1 - 2324
ER -