TY - JOUR
T1 - Computational study of Cu2+, Fe2+, Mn2+, Mn3+, Fe3+, CrO42-, Si4+, and Hg+ binding sites identification on cytokines to predict dental metal allergy
T2 - An in silico study
AU - Berniyanti, Titiek
AU - Nugraha, Alexander Patera
AU - Hidayati, Novi Nurul
AU - Kharisma, Viol Dhea
AU - Nugraha, Albertus Putera
AU - Noor, Tengku Natasha Eleena Binti Tengku Ahmad
N1 - Publisher Copyright:
© 2022 Journal of Pharmacy & Pharmacognosy Research.
PY - 2022/7
Y1 - 2022/7
N2 - Context: Metal allergy is a general term to describe allergic diseases due to the release of metal ion reactions in the body which are mediated by T cells and involve inflammatory cytokines that can cause morbidity and mortality. Molecular docking is an analysis that can be used to assess the interaction of ligand bonds with target proteins that are used to predict metal allergies caused by metal ions that stimulate cytokines. Aims: To analyze the binding sites of Cu2+, Fe2+, Mn2+, Mn3+, Fe3+, CrO42-, Si4+, and Hg+ ions on cytokines to predict dental metal allergy through a bioinformatics approach, in silico. Methods: Metal ion particles consisting of Cu2+, Fe2+, Mn2+, Mn3+, Fe3+, CrO42-, Si4+, and Hg+ were predicted to bind tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin (IL) IL-1β, IL-2, IL-4, IL-10, IL-13, IL-17, IL-23, and IL-33 act as target proteins were examined. Results: The blind docking simulation succeeded in identifying the comparison of the binding activity of metal ion particles on cytokines target proteins. The docking simulation results show that the metal ion with the most negative binding affinity value binds to the IL-17 protein. Conclusions: Metal ion particles consisting of Cu2+, Fe2+, Mn2+, Mn3+, Fe3+, CrO42-, Si4+, and Hg+ have the most negative binding affinity values for binding to IL-17 protein, which can cause allergic reactions predicted by molecular docking, in silico.
AB - Context: Metal allergy is a general term to describe allergic diseases due to the release of metal ion reactions in the body which are mediated by T cells and involve inflammatory cytokines that can cause morbidity and mortality. Molecular docking is an analysis that can be used to assess the interaction of ligand bonds with target proteins that are used to predict metal allergies caused by metal ions that stimulate cytokines. Aims: To analyze the binding sites of Cu2+, Fe2+, Mn2+, Mn3+, Fe3+, CrO42-, Si4+, and Hg+ ions on cytokines to predict dental metal allergy through a bioinformatics approach, in silico. Methods: Metal ion particles consisting of Cu2+, Fe2+, Mn2+, Mn3+, Fe3+, CrO42-, Si4+, and Hg+ were predicted to bind tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin (IL) IL-1β, IL-2, IL-4, IL-10, IL-13, IL-17, IL-23, and IL-33 act as target proteins were examined. Results: The blind docking simulation succeeded in identifying the comparison of the binding activity of metal ion particles on cytokines target proteins. The docking simulation results show that the metal ion with the most negative binding affinity value binds to the IL-17 protein. Conclusions: Metal ion particles consisting of Cu2+, Fe2+, Mn2+, Mn3+, Fe3+, CrO42-, Si4+, and Hg+ have the most negative binding affinity values for binding to IL-17 protein, which can cause allergic reactions predicted by molecular docking, in silico.
KW - allergy
KW - dentistry
KW - good health and well-being
KW - medicine
KW - orthodontics
UR - http://www.scopus.com/inward/record.url?scp=85135166950&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85135166950
SN - 0719-4250
VL - 10
SP - 687
EP - 694
JO - Journal of Pharmacy and Pharmacognosy Research
JF - Journal of Pharmacy and Pharmacognosy Research
IS - 4
ER -