Estimation of nonparametric binary logistic regression model with local likelihood logit estimation method (case study of diabetes mellitus patients at Surabaya Hajj General Hospital)

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

The nonparametric binary logistic model assumes that the logit function is a linear function in the parameter, where the parameter depends on arbitrary fixed point. This study discusses the estimation of a nonparametric binary logistic regression model using the local likelihood logit estimation method. This method assumes that the log likelihood logit function depends on the multivariate kernel weighting. The parameter estimation of a nonparametric binary logistic regression model is obtained by maximizing the log likelihood logit function. The parameter estimation result are implicit, so to estimate it started with determining the optimal bandwidth value based on the maximum Cross Validation value. Furthermore, the optimal bandwidth value is used to estimate parameters using the multivariate Newton-Raphson algorithm until converging iterations are obtained. The parameter estimation process is done by creating a program in OSS-R software. This study also discusses the application of parametric and nonparametric binary logistic regression models in the case study of Type II Diabetes Mellitus patients at the Surabaya Hajj General Hospital. The modeling results show that the classification accuracy value of the parametric and nonparametric binary logistic regression models is 80.2% and 100% for the cut of value of 0.5.

Original languageEnglish
Title of host publicationSymposium on Biomathematics 2019, SYMOMATH 2019
EditorsMochamad Apri, Vitalii Akimenko
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735420243
DOIs
Publication statusPublished - 22 Sept 2020
EventSymposium on Biomathematics 2019, SYMOMATH 2019 - Bali, Indonesia
Duration: 25 Aug 201928 Aug 2019

Publication series

NameAIP Conference Proceedings
Volume2264
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

ConferenceSymposium on Biomathematics 2019, SYMOMATH 2019
Country/TerritoryIndonesia
CityBali
Period25/08/1928/08/19

Keywords

  • Local likelihood logit estimation method
  • Nonparametric binary logistic model
  • Type II diabetes mellitus

Fingerprint

Dive into the research topics of 'Estimation of nonparametric binary logistic regression model with local likelihood logit estimation method (case study of diabetes mellitus patients at Surabaya Hajj General Hospital)'. Together they form a unique fingerprint.

Cite this