The rising concentration of carbon dioxide (CO2) as one of the greenhouse gases in the atmosphere is a major source of worry. Electrochemical reduction of CO2 is one of many ways to convert CO2 gas into usable compounds. An electrochemical technique was applied in this study to reduce CO2 using a boron-doped diamond (BDD) working electrode modified with MXene (Ti3C2Tx) material to improve electrode performance. MXene concentrations of 0.5 mg/mL (MXene-BDD 0.5), 1.0 mg/mL (MXene-BDD 1.0), and 2.0 mg/mL (MXene-BDD 2.0) were drop-casted onto the BDD surface. MXene was effectively deposited on top of the BDD surface, with Ti weight loads of 0.12%, 4.06%, and 7.14% on MXene-BDD 0.5, MXene-BDD 1.0, and MXene-BDD 2.0, respectively. The modified working electrode was employed for CO2 electroreduction with optimal CO2 gas aeration. The existence of the MXene substance in BDD reduced the electroreduction overpotential of CO2. For the final result, we found that the MXene-BDD 2.0 electrode effectively generated the most formic acid product with a maximum reduction potential as low as −1.3 V (vs. Ag/AgCl).

Original languageEnglish
Article number4537
Issue number12
Publication statusPublished - Jun 2023


  • CO reduction
  • MXene
  • boron-doped diamond
  • climate action


Dive into the research topics of 'Enhancement of the Catalytic Effect on the Electrochemical Conversion of CO2 to Formic Acid Using MXene (Ti3C2Tx)-Modified Boron-Doped Diamond Electrode'. Together they form a unique fingerprint.

Cite this