TY - JOUR
T1 - Efficacy of dietary supplementary probiotics as substitutes for antibiotic growth promoters during the starter period on growth performances, carcass traits, and immune organs of male layer chicken
AU - Agustono, B.
AU - Lokapirnasari, W. P.
AU - Yunita, M. N.
AU - Kinanti, R. N.
AU - Cesa, A. E.
AU - Windria, S.
N1 - Publisher Copyright:
Copyright: Agustono, et al. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
PY - 2022/2
Y1 - 2022/2
N2 - Background and Aim: With the increased concerns about global protein supply, chicken meat, especially from male layer chicken, constitutes an alternative in terms of quality and carcass traits. Probiotics have been proposed for replacing antibiotic growth promoters (AGPs), which have been prohibited as poultry supplement feeds. The present study aimed to determine the efficacy of dietary supplementary probiotics during the starter period on growth performances, carcass traits, and immune organs of male layer chicken. Materials and Methods: In this study, one hundred and eighty 1-day-old male chicks from the strain ISA brown were used. They were divided into six groups according to the feed: 100% basal feed (T0), basal feed+2.5 g AGP/kg feed (T1), basal feed+probiotics 1 mL/kg feed (T2), basal feed+probiotics 3 mL/kg feed (T3), basal feed+probiotics 4 mL/kg feed (T4), and basal feed+probiotics 5 mL/kg feed (T5). Probiotics (Lactobacillus acidophilus, Lactobacillus plantarum, and Bifidobacterium spp.) were given at a concentration of 1.2×109 colony-forming unit/mL. Virginiamycin was used as AGP. ISA brown layer chicken was treated for 21 days. Growth performances (body weight, feed consumption, and feed conversion ratio [FCR]), carcass traits (weight at slaughter, weight of the carcass, breast muscles, liver, lungs, kidneys, and heart), immune organs (spleen, thymus, and bursa of Fabricius), and non-edible organs (head, legs, and wings) were analyzed. Results: Probiotic supplementation at 4 and 5 mL/kg feed (T4 and T5) during the starter phase improved the body weight, FCR, and feed consumption. The weight at slaughter, weight of the carcass, breast muscles, and liver from the T4 and T5 groups were significantly greater than those in the other treatment groups. In addition, the weight of the heart, lungs, and kidneys was increased in the T1, T2, T3, T4, and T5 groups compared with that measured in the T0 group. Furthermore, there were significant differences regarding the immune organs between the T0 and the other treatment groups. The weight of the head, legs, and wings was also greater in the probiotic and AGP supplementation groups (T1, T2, T3, T4, and T5) than that in the basal feed group (T0). Conclusion: Probiotic (L. acidophilus, L. plantarum, and Bifidobacterium spp.) supplementation at 4 and 5 mL/kg feed during the starter period can be used to improve the growth, carcass traits, and weight of immune organs in male layer chicken.
AB - Background and Aim: With the increased concerns about global protein supply, chicken meat, especially from male layer chicken, constitutes an alternative in terms of quality and carcass traits. Probiotics have been proposed for replacing antibiotic growth promoters (AGPs), which have been prohibited as poultry supplement feeds. The present study aimed to determine the efficacy of dietary supplementary probiotics during the starter period on growth performances, carcass traits, and immune organs of male layer chicken. Materials and Methods: In this study, one hundred and eighty 1-day-old male chicks from the strain ISA brown were used. They were divided into six groups according to the feed: 100% basal feed (T0), basal feed+2.5 g AGP/kg feed (T1), basal feed+probiotics 1 mL/kg feed (T2), basal feed+probiotics 3 mL/kg feed (T3), basal feed+probiotics 4 mL/kg feed (T4), and basal feed+probiotics 5 mL/kg feed (T5). Probiotics (Lactobacillus acidophilus, Lactobacillus plantarum, and Bifidobacterium spp.) were given at a concentration of 1.2×109 colony-forming unit/mL. Virginiamycin was used as AGP. ISA brown layer chicken was treated for 21 days. Growth performances (body weight, feed consumption, and feed conversion ratio [FCR]), carcass traits (weight at slaughter, weight of the carcass, breast muscles, liver, lungs, kidneys, and heart), immune organs (spleen, thymus, and bursa of Fabricius), and non-edible organs (head, legs, and wings) were analyzed. Results: Probiotic supplementation at 4 and 5 mL/kg feed (T4 and T5) during the starter phase improved the body weight, FCR, and feed consumption. The weight at slaughter, weight of the carcass, breast muscles, and liver from the T4 and T5 groups were significantly greater than those in the other treatment groups. In addition, the weight of the heart, lungs, and kidneys was increased in the T1, T2, T3, T4, and T5 groups compared with that measured in the T0 group. Furthermore, there were significant differences regarding the immune organs between the T0 and the other treatment groups. The weight of the head, legs, and wings was also greater in the probiotic and AGP supplementation groups (T1, T2, T3, T4, and T5) than that in the basal feed group (T0). Conclusion: Probiotic (L. acidophilus, L. plantarum, and Bifidobacterium spp.) supplementation at 4 and 5 mL/kg feed during the starter period can be used to improve the growth, carcass traits, and weight of immune organs in male layer chicken.
KW - Feed supplementation
KW - Growth performance
KW - ISA brown layer chicken
KW - Probiotic
KW - Starter period
UR - http://www.scopus.com/inward/record.url?scp=85124945014&partnerID=8YFLogxK
U2 - 10.14202/vetworld.2022.324-330
DO - 10.14202/vetworld.2022.324-330
M3 - Article
AN - SCOPUS:85124945014
SN - 0972-8988
VL - 15
SP - 324
EP - 330
JO - Veterinary World
JF - Veterinary World
IS - 2
ER -