Effects of Human Deciduous Dental Pulp-Derived Mesenchymal Stem Cell-Derived Conditioned Medium on the Metabolism of HUVECs, Osteoblasts, and BMSCs

Ryo Kunimatsu, Tomoka Hiraki, Kodai Rikitake, Kengo Nakajima, Nurul Aisyah Rizky Putranti, Takaharu Abe, Kazuyo Ando, Ayaka Nakatani, Shuzo Sakata, Kotaro Tanimoto

Research output: Contribution to journalArticlepeer-review

Abstract

In this study, we assessed the effects of human deciduous dental pulp-derived mesenchymal stem cell-derived conditioned medium (SHED-CM) on the properties of various cell types. The effects of vascular endothelial growth factor (VEGF) in SHED-CM on the luminal architecture, proliferative ability, and angiogenic potential of human umbilical vein endothelial cells (HUVECs) were determined. We also investigated the effects of SHED-CM on the proliferation of human-bone-marrow mesenchymal stem cells (hBMSCs) and mouse calvarial osteoblastic cells (MC3T3-E1) as well as the expression of ALP, OCN, and RUNX2. The protein levels of ALP were examined using Western blot analysis. VEGF blockade in SHED-CM suppressed the proliferative ability and angiogenic potential of HUVECs, indicating that VEGF in SHED-CM contributes to angiogenesis. The culturing of hBMSCs and MC3T3-E1 cells with SHED-CM accelerated cell growth and enhanced mRNA expression of bone differentiation markers. The addition of SHED-CM enhanced ALP protein expression in hBMSCs and MT3T3-E1 cells compared with that of the 0% FBS group. Furthermore, SHED-CM promoted the metabolism of HUVECs, MC3T3-E1 cells, and hBMSCs. These findings indicate the potential benefits of SHED-CM in bone tissue regeneration.

Original languageEnglish
Article number3222
JournalCells
Volume11
Issue number20
DOIs
Publication statusPublished - Oct 2022
Externally publishedYes

Keywords

  • bone regeneration
  • culture
  • dental pulp
  • stem cells
  • vascular endothelial growth factor A

Fingerprint

Dive into the research topics of 'Effects of Human Deciduous Dental Pulp-Derived Mesenchymal Stem Cell-Derived Conditioned Medium on the Metabolism of HUVECs, Osteoblasts, and BMSCs'. Together they form a unique fingerprint.

Cite this