Discovering process model from event logs by considering overlapping rules

Yutika Amelia Effendi, Riyanarto Sarno

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Citations (Scopus)

Abstract

Process Mining is a technique to automatically discover and analyze business processes from event logs. Discovering concurrent activities often uses process mining since there are many of them contained in business processes. Since researchers and practitioners are giving attention to the process discovery (one of process mining techniques), then the best result of the discovered process models is a must. Nowadays, using process execution data in the past, process models with rules underlying decisions in processes can be enriched, called decision mining. Rules defined over process data specify choices between multiple activities. One out of multiple activities is allowed to be executed in existing decision mining methods or it is known as mutually-exclusive rules. Not only mutually-exclusive rules, but also fully deterministic because all factors which influence decisions are recorded. However, because of non-determinism or incomplete information, there are some cases that are overlapping in process model. Moreover, the rules which are generated from existing method are not suitable with the recorded data. In this paper, a discovery technique for process model with data by considering the overlapping rules from event logs is presented. Discovering overlapping rules uses decision tree learning techniques, which fit the recorded data better than the existing method. Process model discovery from event logs is generated using Modified Time-Based Heuristics Miner Algorithm. Last, online book store management process model is presented in High-level BPMN Process Model.

Original languageEnglish
Title of host publicationProceedings - 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics, EECSI 2017
EditorsHatib Rahmawan, Mochammad Facta, Munawar A. Riyadi, Deris Stiawan
PublisherInstitute of Advanced Engineering and Science
ISBN (Electronic)9781538605486
DOIs
Publication statusPublished - 22 Dec 2017
Externally publishedYes
Event4th International Conference on Electrical Engineering, Computer Science and Informatics, EECSI 2017 - Yogyakarta, Indonesia
Duration: 19 Sept 201721 Sept 2017

Publication series

NameInternational Conference on Electrical Engineering, Computer Science and Informatics (EECSI)
Volume2017-December
ISSN (Print)2407-439X

Conference

Conference4th International Conference on Electrical Engineering, Computer Science and Informatics, EECSI 2017
Country/TerritoryIndonesia
CityYogyakarta
Period19/09/1721/09/17

Keywords

  • BPMN
  • Decision mining
  • Modified time-based heuristics miner
  • Overlapping rules
  • Petri net
  • Process discovery
  • Process mining

Fingerprint

Dive into the research topics of 'Discovering process model from event logs by considering overlapping rules'. Together they form a unique fingerprint.

Cite this