Collagen-chitosan scaffold - Lauric acid plasticizer for skin tissue engineering on burn cases

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

The prevalence of burns in the world is more than 800 cases per one million people each year and this is the second highest cause of death due to trauma after traffic accident. Many studies are turning to skin substitute methods of tissue engineering. The purpose of this study is to determine the composition of the collagen, chitosan, and lauric acid scaffold, as well as knowing the results of the characterization of the scaffold. The synthesis of chitosan collagen lauric acid scaffold as a skin tissue was engineered using freeze dried method. Results from making of collagen chitosan lauric acid scaffold was characterized physically, biologically and mechanically by SEM, cytotoxicity, biodegradation, and tensile strength. From the morphology test, the result obtained is that pore diameter size ranges from 94.11 to 140.1 μm for samples A,B,C,D, which are in the range of normal pore size 63-150 μm, while sample E has value below the standard which is about 37.87 to 47.36 μm. From cytotoxicity assay, the result obtained is the percentage value of living cells between 20.11 to 21.51%. This value is below 50% the standard value of living cells. Incompatibility is made possible because of human error mainly the replication of washing process over the standard. Degradation testing obtained values of 19.44% - 40% by weight which are degraded during the 7 days of observation. Tensile test results obtained a range of values of 0.192 - 3.53 MPa. Only sample A (3.53 MPa) and B (1.935 MPa) meet the standard values of skin tissue scaffold that is 1-24 MPa. Based on the results of the characteristics of this study, composite chitosan collagen scaffold with lauric acid plasticizer has a potential candidate for skin tissue engineering for skin burns cases.

Original languageEnglish
Title of host publicationBiomedical Engineering's Recent Progress in Biomaterials, Drugs Development, and Medical Devices
Subtitle of host publicationProceedings of the 1st International Symposium of Biomedical Engineering, ISBE 2016
EditorsYudan Whulanza, Sugeng Supriadi, Muhamad Sahlan, Basari
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735414853
DOIs
Publication statusPublished - 21 Feb 2017
Event1st International Symposium of Biomedical Engineering: Biomedical Engineering's Recent Progress in Biomaterials, Drugs Development, and Medical Devices, ISBE 2016 - Depok City, Indonesia
Duration: 31 May 20161 Jun 2016

Publication series

NameAIP Conference Proceedings
Volume1817
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference1st International Symposium of Biomedical Engineering: Biomedical Engineering's Recent Progress in Biomaterials, Drugs Development, and Medical Devices, ISBE 2016
Country/TerritoryIndonesia
CityDepok City
Period31/05/161/06/16

Keywords

  • chitosan
  • collagen
  • lauric acid
  • scaffold
  • skin tissue engineering

Fingerprint

Dive into the research topics of 'Collagen-chitosan scaffold - Lauric acid plasticizer for skin tissue engineering on burn cases'. Together they form a unique fingerprint.

Cite this