Classification of tumor based on magnetic resonance (MR) brain images using wavelet energy feature and neuro-fuzzy model

Research output: Contribution to journalConference articlepeer-review

7 Citations (Scopus)


The brain is the organ that coordinates all the activities that occur in our bodies. Small abnormalities in the brain will affect body activity. Tumor of the brain is a mass formed a result of cell growth not normal and unbridled in the brain. MRI is a non-invasive medical test that is useful for doctors in diagnosing and treating medical conditions. The process of classification of brain tumor can provide the right decision and correct treatment and right on the process of treatment of brain tumor. In this study, the classification process performed to determine the type of brain tumor disease, namely Alzheimer's, Glioma, Carcinoma and normal, using energy coefficient and ANFIS. Process stages in the classification of images of MR brain are the extraction of a feature, reduction of a feature, and process of classification. The result of feature extraction is a vector approximation of each wavelet decomposition level. The feature reduction is a process of reducing the feature by using the energy coefficients of the vector approximation. The feature reduction result for energy coefficient of 100 per feature is 1 x 52 pixels. This vector will be the input on the classification using ANFIS with Fuzzy C-Means and FLVQ clustering process and LM back-propagation. Percentage of success rate of MR brain images recognition using ANFIS-FLVQ, ANFIS, and LM back-propagation was obtained at 100%.

Original languageEnglish
Article number012027
JournalJournal of Physics: Conference Series
Issue number1
Publication statusPublished - 22 Mar 2018
Event3rd International Conference on Mathematics: Pure, Applied and Computation, ICoMPAC 2017 - Surabaya, Indonesia
Duration: 1 Nov 20171 Nov 2017


Dive into the research topics of 'Classification of tumor based on magnetic resonance (MR) brain images using wavelet energy feature and neuro-fuzzy model'. Together they form a unique fingerprint.

Cite this