Background: In the recent studies, a less virulent Helicobacter pylori variant could still colonize the human stomach and induce gastric inflammation, suggesting the involvement of other virulence factors, such as TlyA hemolysin. Nevertheless, the association of TlyA in the pathogenesis of H. pylori infection remains unclear. We investigated the tlyA profile and determined its relationship with gastritis severity. Methods: An observational study was conducted using DNA stocks and secondary data from previous studies. The tlyA variant was examined by NGS and confirmed with polymerase chain reaction. Gastritis severity was categorized by the Updated Sydney System. The relationship between a variant of tlyA and gastritis severity was determined, in which discrete variables were tested using the χ2 test or Fisher exact test. Results: Two H. pylori tlyA variants were observed and characterized as tlyA1 and tlyA2. We noted a unique variant in the amino acid sequence 32-35 that is exclusively detected among H. pylori isolated from the Papua island. In addition, we observed that the tlyA variant had a significant association with the H. pylori density in the antral (p = 0.002). Histological analyses revealed that TlyA1 was associated with higher H. pylori density than TlyA2. However, we did not observe any significant association of tlyA with the infiltration of inflammation cells. Conclusions: We observed 2 tlyA variants (tlyA1 and tlyA2). A significant association of tlyA with bacterial density suggested that tlyA plays a more significant role in the colonization process than its influence on the severity of inflammation in gastric mucosa.

Original languageEnglish
Pages (from-to)417-426
Number of pages10
JournalDigestive Diseases
Issue number4
Publication statusPublished - 1 Jul 2022


  • Bacterial density
  • Epidemiology
  • Helicobacter pylori
  • Virulence factors
  • tlyA


Dive into the research topics of 'Characterization of Helicobacter pylori tlyA and Its Association with Bacterial Density'. Together they form a unique fingerprint.

Cite this