TY - JOUR
T1 - An Affordable phototherapy intensity meter using machine learning to improve the quality of care system for Hyperbilirubinemia in Indonesia
AU - Kristian, Yosi
AU - Arif Sampurna, Mahendra Tri
AU - Susanto, Evan Kusuma
AU - Visuddho, Visuddho
AU - Liem, Kian Djien
N1 - Publisher Copyright:
Copyright: © 2023 Kristian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2023/5
Y1 - 2023/5
N2 - Hyperbilirubinemia is more frequently seen in low and middle-income countries like Indonesia. One of the contributing factors is a substandard dose of Phototherapy irradiance. This research aims to design a phototherapy intensity meter called PhotoInMeter using readily available low-cost components. PhotoInMeter is designed by using a microcontroller, light sensor, color sensor, and an ND (neutral-density) filter. We use machine learning to create a mathematical model that converts the emission from the color sensor and light sensor into light intensity measurements that are close to Ohmeda Biliblanket's measurements. Our prototype collects sensor reading data and pairs them with Ohmeda Biliblanket Light Meter to create a training set for our machine learning algorithm. We create a multivariate linear regression, random forest, and XGBoost model based on our training set to convert sensor readings to Ohmeda Biliblanket Light Meter measurement. We successfully devised a prototype that costs 20 times less to produce compared to our reference intensity meter while still having high accuracy. Compared to Ohmeda Biliblanket Light Meter, our PhotoInMeter has a Mean Absolute Error (MAE) of 0.83 and achieves more than a 0.99 correlation score in all six different devices for intensity in the range of 0-90 μW/cm2/nm. Our prototypes show consistent reading between PhotoInMeter devices, having an average difference of 0.435 among all six devices.
AB - Hyperbilirubinemia is more frequently seen in low and middle-income countries like Indonesia. One of the contributing factors is a substandard dose of Phototherapy irradiance. This research aims to design a phototherapy intensity meter called PhotoInMeter using readily available low-cost components. PhotoInMeter is designed by using a microcontroller, light sensor, color sensor, and an ND (neutral-density) filter. We use machine learning to create a mathematical model that converts the emission from the color sensor and light sensor into light intensity measurements that are close to Ohmeda Biliblanket's measurements. Our prototype collects sensor reading data and pairs them with Ohmeda Biliblanket Light Meter to create a training set for our machine learning algorithm. We create a multivariate linear regression, random forest, and XGBoost model based on our training set to convert sensor readings to Ohmeda Biliblanket Light Meter measurement. We successfully devised a prototype that costs 20 times less to produce compared to our reference intensity meter while still having high accuracy. Compared to Ohmeda Biliblanket Light Meter, our PhotoInMeter has a Mean Absolute Error (MAE) of 0.83 and achieves more than a 0.99 correlation score in all six different devices for intensity in the range of 0-90 μW/cm2/nm. Our prototypes show consistent reading between PhotoInMeter devices, having an average difference of 0.435 among all six devices.
UR - http://www.scopus.com/inward/record.url?scp=85159055473&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0285128
DO - 10.1371/journal.pone.0285128
M3 - Article
C2 - 37130099
AN - SCOPUS:85159055473
SN - 1932-6203
VL - 18
JO - PLoS ONE
JF - PLoS ONE
IS - 5 May
M1 - e0285128
ER -