TY - JOUR
T1 - A PSO-TVAC for optimal installation of multiple distributed generations in a radial distribution system
AU - Rosli, Hazwani Mohd
AU - Halim, Syahirah Abd
AU - Awalin, Lilik Jamilatul
AU - Mustaza, Seri Mastura
N1 - Publisher Copyright:
© 2023 Institute of Advanced Engineering and Science. All rights reserved.
PY - 2023/11
Y1 - 2023/11
N2 - The integration of distributed generations (DGs) into distribution system networks has seen a significant increase owing to the depletion of conventional energy resources and the growing power demand. However, a high penetration of DGs can adversely affect the stability of the distribution networks due to the intermittent nature of their generation capabilities. Hence, it is crucial to design DGs optimally to support grid voltage regulation and improve distribution networks performance. This study utilizes a particle swarm optimization (PSO) with time-varying acceleration coefficients (PSO-TVAC) technique to optimize the location and size of various distributed generation units while minimizing the total active power loss. The initial system power loss was determined using a distribution load flow analysis based on the backward-forward technique. The PSO-TVAC algorithm was then employed to identify the optimal placement and sizing of DGs within the standard IEEE 33-bus radial distribution network. To assess the proposed algorithm's effectiveness, photovoltaic (PV) and wind turbine (WT) were considered as the DGs. In comparison with other algorithms, PSO-TVAC achieved the lowest power loss, measuring 72.79 [kW] and 12.14 [kW] for 3-PV and 3-WT installations, respectively. Furthermore, the optimal installation of 3-PV and 3-WT improved the distribution system performance by 65.49% and 94.25%, respectively.
AB - The integration of distributed generations (DGs) into distribution system networks has seen a significant increase owing to the depletion of conventional energy resources and the growing power demand. However, a high penetration of DGs can adversely affect the stability of the distribution networks due to the intermittent nature of their generation capabilities. Hence, it is crucial to design DGs optimally to support grid voltage regulation and improve distribution networks performance. This study utilizes a particle swarm optimization (PSO) with time-varying acceleration coefficients (PSO-TVAC) technique to optimize the location and size of various distributed generation units while minimizing the total active power loss. The initial system power loss was determined using a distribution load flow analysis based on the backward-forward technique. The PSO-TVAC algorithm was then employed to identify the optimal placement and sizing of DGs within the standard IEEE 33-bus radial distribution network. To assess the proposed algorithm's effectiveness, photovoltaic (PV) and wind turbine (WT) were considered as the DGs. In comparison with other algorithms, PSO-TVAC achieved the lowest power loss, measuring 72.79 [kW] and 12.14 [kW] for 3-PV and 3-WT installations, respectively. Furthermore, the optimal installation of 3-PV and 3-WT improved the distribution system performance by 65.49% and 94.25%, respectively.
KW - Distributed generations Photovoltaic PSO-TVAC Radial distribution network Wind turbine
UR - http://www.scopus.com/inward/record.url?scp=85174209367&partnerID=8YFLogxK
U2 - 10.11591/ijeecs.v32.i2.pp612-619
DO - 10.11591/ijeecs.v32.i2.pp612-619
M3 - Article
AN - SCOPUS:85174209367
SN - 2502-4752
VL - 32
SP - 612
EP - 619
JO - Indonesian Journal of Electrical Engineering and Computer Science
JF - Indonesian Journal of Electrical Engineering and Computer Science
IS - 2
ER -